New Type of Fractal Functions for the General Data Sets

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Manuj Verma, Amit Priyadarshi
{"title":"New Type of Fractal Functions for the General Data Sets","authors":"Manuj Verma,&nbsp;Amit Priyadarshi","doi":"10.1007/s10440-023-00604-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove the existence of the fractal interpolation function corresponding to a general data set using the Rakotch contraction theory and iterated function system. We also prove the existence of the fractal measure supported on the graph of the fractal interpolation function. We emphasize the fact that our theory covers the fractal interpolation theory for finite cases, countably infinite cases, and many more. We establish dimensional results for the graph of the fractal interpolation function for the general data sets.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"187 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-023-00604-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove the existence of the fractal interpolation function corresponding to a general data set using the Rakotch contraction theory and iterated function system. We also prove the existence of the fractal measure supported on the graph of the fractal interpolation function. We emphasize the fact that our theory covers the fractal interpolation theory for finite cases, countably infinite cases, and many more. We establish dimensional results for the graph of the fractal interpolation function for the general data sets.

Abstract Image

一般数据集的新型分形函数
本文利用Rakoch收缩理论和迭代函数系统,证明了一般数据集对应的分形插值函数的存在性。我们还证明了分形插值函数图上支持的分形测度的存在性。我们强调,我们的理论涵盖了有限情况、可数无限情况以及更多情况下的分形插值理论。我们建立了一般数据集的分形插值函数图的维数结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信