Characterization from Diesel and Renewable Fuel Engine Exhaust: Particulate Size/Mass Distributions and Optical Properties

IF 1.6 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Nikhil Sharma, Kalyan Mitra, Jelena Pezer, Ravikant Pathak, Jonas Sjöblom
{"title":"Characterization from Diesel and Renewable Fuel Engine Exhaust: Particulate Size/Mass Distributions and Optical Properties","authors":"Nikhil Sharma,&nbsp;Kalyan Mitra,&nbsp;Jelena Pezer,&nbsp;Ravikant Pathak,&nbsp;Jonas Sjöblom","doi":"10.1007/s41810-023-00172-x","DOIUrl":null,"url":null,"abstract":"<div><p>Combustion of fossil fuel produces emissions and is one of the major environmental problems leading to climate change. Diesel engines are highly efficient but produce particulate emissions. These particulate emissions are considered dangerous to human health because inhaling particulates may cause respiratory and heart disease. Substituting fossil diesel fuel with renewable diesel fuel and using diesel particulate filters is one possibility to meet stringent legislative requirements. With this motivation, the present experimental investigation aimed to evaluate the particle size distribution (PSD), optical properties of particulate matter (PM) emitted, and the outcome of using an after-treatment system comprising of a diesel particle filter (DPF). This investigation aimed to make a comparative analysis of particulate emission upstream and downstream of the DPF with and without ultraviolet (UV) light (405 nm and 781 nm wavelength) turned on/off. Experiments were performed at (a) engine idle with a torque of 6 Nm at 750 rpm, IMEP of 1.35 bar and power of 0.5 kW, (b) engine at part load with a torque of 32 Nm at 1200 rpm, IMEP of 8.5 bar and power of 4.5 kW. Diesel engine was operated on two fuels (a) Diesel and (b) EHR7. Results showed that as and when UV light was turned on, a distinct nucleation mode that dominated the number concentration for both test fuels were observed. Downstream of the filter had relatively higher AAE values which show the contribution to climate change. Present experimental research is important for renewable fuel industries, industrial innovation's future, and the exhaust gas after-treatment system (EATS) community. The results contribute to knowledge for occupational exposure, human health, and the environment.</p></div>","PeriodicalId":36991,"journal":{"name":"Aerosol Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41810-023-00172-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s41810-023-00172-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Combustion of fossil fuel produces emissions and is one of the major environmental problems leading to climate change. Diesel engines are highly efficient but produce particulate emissions. These particulate emissions are considered dangerous to human health because inhaling particulates may cause respiratory and heart disease. Substituting fossil diesel fuel with renewable diesel fuel and using diesel particulate filters is one possibility to meet stringent legislative requirements. With this motivation, the present experimental investigation aimed to evaluate the particle size distribution (PSD), optical properties of particulate matter (PM) emitted, and the outcome of using an after-treatment system comprising of a diesel particle filter (DPF). This investigation aimed to make a comparative analysis of particulate emission upstream and downstream of the DPF with and without ultraviolet (UV) light (405 nm and 781 nm wavelength) turned on/off. Experiments were performed at (a) engine idle with a torque of 6 Nm at 750 rpm, IMEP of 1.35 bar and power of 0.5 kW, (b) engine at part load with a torque of 32 Nm at 1200 rpm, IMEP of 8.5 bar and power of 4.5 kW. Diesel engine was operated on two fuels (a) Diesel and (b) EHR7. Results showed that as and when UV light was turned on, a distinct nucleation mode that dominated the number concentration for both test fuels were observed. Downstream of the filter had relatively higher AAE values which show the contribution to climate change. Present experimental research is important for renewable fuel industries, industrial innovation's future, and the exhaust gas after-treatment system (EATS) community. The results contribute to knowledge for occupational exposure, human health, and the environment.

从柴油和可再生燃料发动机排气表征:颗粒尺寸/质量分布和光学性质
化石燃料的燃烧会产生排放,是导致气候变化的主要环境问题之一。柴油发动机效率很高,但会产生颗粒物排放。这些颗粒物排放被认为对人类健康有害,因为吸入颗粒物可能会导致呼吸道和心脏病。用可再生柴油燃料替代化石柴油燃料并使用柴油颗粒过滤器是满足严格立法要求的一种可能性。出于这一动机,本实验研究旨在评估颗粒尺寸分布(PSD)、排放颗粒物(PM)的光学特性以及使用由柴油颗粒过滤器(DPF)组成的后处理系统的结果。本研究旨在对开启/关闭紫外线(405nm和781nm波长)时DPF上游和下游的颗粒物排放进行比较分析。实验在以下条件下进行:(a)发动机怠速,750转/分时扭矩为6牛米,IMEP为1.35巴,功率为0.5千瓦。结果表明,当打开紫外线时,观察到两种测试燃料的不同成核模式,该模式主导了数量浓度。过滤器下游的AAE值相对较高,这表明了对气候变化的贡献。目前的实验研究对可再生燃料行业、工业创新的未来以及废气后处理系统(EATS)社区具有重要意义。研究结果有助于了解职业暴露、人类健康和环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aerosol Science and Engineering
Aerosol Science and Engineering Environmental Science-Pollution
CiteScore
3.00
自引率
7.10%
发文量
42
期刊介绍: ASE is an international journal that publishes high-quality papers, communications, and discussion that advance aerosol science and engineering. Acceptable article forms include original research papers, review articles, letters, commentaries, news and views, research highlights, editorials, correspondence, and new-direction columns. ASE emphasizes the application of aerosol technology to both environmental and technical issues, and it provides a platform not only for basic research but also for industrial interests. We encourage scientists and researchers to submit papers that will advance our knowledge of aerosols and highlight new approaches for aerosol studies and new technologies for pollution control. ASE promotes cutting-edge studies of aerosol science and state-of-art instrumentation, but it is not limited to academic topics and instead aims to bridge the gap between basic science and industrial applications.  ASE accepts papers covering a broad range of aerosol-related topics, including aerosol physical and chemical properties, composition, formation, transport and deposition, numerical simulation of air pollution incidents, chemical processes in the atmosphere, aerosol control technologies and industrial applications. In addition, ASE welcomes papers involving new and advanced methods and technologies that focus on aerosol pollution, sampling and analysis, including the invention and development of instrumentation, nanoparticle formation, nano technology, indoor and outdoor air quality monitoring, air pollution control, and air pollution remediation and feasibility assessments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信