On a type of maximal abelian torsion free subgroups of connected Lie groups

IF 0.4 4区 数学 Q4 MATHEMATICS
Abdelhak Abouqateb, Mehdi Nabil
{"title":"On a type of maximal abelian torsion free subgroups of connected Lie groups","authors":"Abdelhak Abouqateb,&nbsp;Mehdi Nabil","doi":"10.1007/s12188-020-00214-y","DOIUrl":null,"url":null,"abstract":"<div><p>For an arbitrary real connected Lie group <i>G</i> we define <span>\\(\\mathrm {p}(G)\\)</span> as the maximal integer <i>p</i> such that <span>\\(\\mathbb {Z}^p\\)</span> is isomorphic to a discrete subgroup of <i>G</i> and <span>\\(\\mathrm {q}(G)\\)</span> is the maximal integer <i>q</i> such that <span>\\(\\mathbb {R}^q\\)</span> is isomorphic to a closed subgroup of <i>G</i>. The aim of this paper is to investigate properties of these two invariants. We will show that if <i>G</i> is a noncompact connected Lie group, then <span>\\(1\\le \\mathrm {q}(G)\\le \\mathrm {p}(G)\\le \\dim (G/K)\\)</span> where <i>K</i> is a maximal compact subgroup of <i>G</i>. In the cases when <i>G</i> is an exponential Lie group or <i>G</i> is a connected nilpotent Lie group, we give explicit relationships between these two invariants and a well known Lie algebra invariant <span>\\(\\mathcal M(\\mathfrak {g})\\)</span>, i.e. the maximum among the dimensions of abelian subalgebras of the Lie algebra <span>\\(\\mathfrak {g}:=\\mathrm {Lie}(G)\\)</span>.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-020-00214-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-020-00214-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For an arbitrary real connected Lie group G we define \(\mathrm {p}(G)\) as the maximal integer p such that \(\mathbb {Z}^p\) is isomorphic to a discrete subgroup of G and \(\mathrm {q}(G)\) is the maximal integer q such that \(\mathbb {R}^q\) is isomorphic to a closed subgroup of G. The aim of this paper is to investigate properties of these two invariants. We will show that if G is a noncompact connected Lie group, then \(1\le \mathrm {q}(G)\le \mathrm {p}(G)\le \dim (G/K)\) where K is a maximal compact subgroup of G. In the cases when G is an exponential Lie group or G is a connected nilpotent Lie group, we give explicit relationships between these two invariants and a well known Lie algebra invariant \(\mathcal M(\mathfrak {g})\), i.e. the maximum among the dimensions of abelian subalgebras of the Lie algebra \(\mathfrak {g}:=\mathrm {Lie}(G)\).

关于连通李群的一类极大阿贝尔无扭子群
对于任意实连通李群G,我们定义\(\mathrm{p}(G)\)为最大整数p,使得\(\mathebb{Z}^p)同构于G的离散子群,并且\(\math rm{q}(G)\)是最大整数q,使得\。我们将证明,如果G是非紧连通李群,则\(1\le\mathrm{q}(G)\le\mathrm{p}(G)\le\dim(G/K)\)其中K是G的极大紧子群。在G是指数李群或G是连通幂零李群的情况下,我们给出了这两个不变量与一个众所周知的李代数不变量\(\mathcal M(\mathfrak{G})\)之间的显式关系,即李代数\(\mathfrak{g}:=\mathrm{Lie}(g)\)的阿贝尔子代数的维数中的最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信