Two graded rings of Hermitian modular forms

IF 0.4 4区 数学 Q4 MATHEMATICS
Brandon Williams
{"title":"Two graded rings of Hermitian modular forms","authors":"Brandon Williams","doi":"10.1007/s12188-021-00245-z","DOIUrl":null,"url":null,"abstract":"<div><p>We give generators and relations for the graded rings of Hermitian modular forms of degree two over the rings of integers in <span>\\({\\mathbb {Q}}(\\sqrt{-7})\\)</span> and <span>\\({\\mathbb {Q}}(\\sqrt{-11})\\)</span>. In both cases we prove that the subrings of symmetric modular forms are generated by Maass lifts. The computation uses a reduction process against Borcherds products which also leads to a dimension formula for the spaces of modular forms.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"91 2","pages":"257 - 285"},"PeriodicalIF":0.4000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-021-00245-z","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-021-00245-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We give generators and relations for the graded rings of Hermitian modular forms of degree two over the rings of integers in \({\mathbb {Q}}(\sqrt{-7})\) and \({\mathbb {Q}}(\sqrt{-11})\). In both cases we prove that the subrings of symmetric modular forms are generated by Maass lifts. The computation uses a reduction process against Borcherds products which also leads to a dimension formula for the spaces of modular forms.

厄密模形式的两个分级环
我们给出了在\({\mathbb{Q}}(\sqrt{-7})\)和\({{\math bb{Q}(\ sqrt{-11}))中的整数环上二阶Hermitian模形式的分次环的生成元和关系。在这两种情况下,我们都证明了对称模形式的子环是由Maas提升生成的。计算使用了针对Borcherds乘积的归约过程,这也导致了模形式空间的维数公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信