{"title":"Vibration isolation performance analysis of a bilateral supported bio-inspired anti-vibration control system","authors":"Shihua Zhou, Dongsheng Zhang, Bowen Hou, Zhaohui Ren","doi":"10.1007/s10483-023-2988-6","DOIUrl":null,"url":null,"abstract":"<div><p>To achieve better anti-vibration performance in a low frequency region and expand the range of vibration isolation, a bilateral supported bio-inspired anti-vibration (BBAV) structure composed of purely linear elements is proposed, inspired by the motion form of bird legs and the nonlinear extension and compression of muscles and tendons. The kinematic relations and nonlinear dynamic model considering vertical and rotational vibrations are established. The loading capacity and equivalent stiffness are investigated with key parameters. The amplitude-frequency characteristics and force transmissibility are used to evaluate the stability and anti-vibration performance with the effects of the excitation amplitude, rod length, installation angle, and spring stiffness. The results show that the loading requirements and resonant characteristics of the BBAV structure are adjustable, and superior vibration isolation performance can be achieved readily by tuning the parameters. The X-shaped vibration structure is sensitive to the spring stiffness, which exhibits a wider vibration isolation bandwidth with smaller spring stiffness. Besides, depending on the parameters, the nonlinear behavior of the BBAV system can be interconverted between the softening type and the hardening type. The theoretical analysis in this study demonstrates the advantages and effectiveness of the vibration isolation structure.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 5","pages":"759 - 772"},"PeriodicalIF":4.5000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10483-023-2988-6.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-2988-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
To achieve better anti-vibration performance in a low frequency region and expand the range of vibration isolation, a bilateral supported bio-inspired anti-vibration (BBAV) structure composed of purely linear elements is proposed, inspired by the motion form of bird legs and the nonlinear extension and compression of muscles and tendons. The kinematic relations and nonlinear dynamic model considering vertical and rotational vibrations are established. The loading capacity and equivalent stiffness are investigated with key parameters. The amplitude-frequency characteristics and force transmissibility are used to evaluate the stability and anti-vibration performance with the effects of the excitation amplitude, rod length, installation angle, and spring stiffness. The results show that the loading requirements and resonant characteristics of the BBAV structure are adjustable, and superior vibration isolation performance can be achieved readily by tuning the parameters. The X-shaped vibration structure is sensitive to the spring stiffness, which exhibits a wider vibration isolation bandwidth with smaller spring stiffness. Besides, depending on the parameters, the nonlinear behavior of the BBAV system can be interconverted between the softening type and the hardening type. The theoretical analysis in this study demonstrates the advantages and effectiveness of the vibration isolation structure.
期刊介绍:
Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China.
Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.