On linear relations for L-values over real quadratic fields

IF 0.4 4区 数学 Q4 MATHEMATICS
Ren-He Su
{"title":"On linear relations for L-values over real quadratic fields","authors":"Ren-He Su","doi":"10.1007/s12188-018-0199-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we give a method to construct a classical modular form from a Hilbert modular form. By applying this method, we can get linear formulas which relate the Fourier coefficients of the Hilbert and classical modular forms. The paper focuses on the Hilbert modular forms over real quadratic fields. We will state a construction of relations between the special values of L-functions, especially at 0, and arithmetic functions. We will also give a relation between the sum of squares functions with underlying fields <span>\\(\\mathbb {Q}(\\sqrt{D})\\)</span> and <span>\\(\\mathbb {Q}\\)</span>.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2018-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-018-0199-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-018-0199-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we give a method to construct a classical modular form from a Hilbert modular form. By applying this method, we can get linear formulas which relate the Fourier coefficients of the Hilbert and classical modular forms. The paper focuses on the Hilbert modular forms over real quadratic fields. We will state a construction of relations between the special values of L-functions, especially at 0, and arithmetic functions. We will also give a relation between the sum of squares functions with underlying fields \(\mathbb {Q}(\sqrt{D})\) and \(\mathbb {Q}\).

关于实二次域上l值的线性关系
本文给出了一种由Hilbert模形式构造经典模形式的方法,应用该方法可以得到Hilbert的傅立叶系数与经典模形式之间的线性关系式。本文主要研究实二次域上的Hilbert模形式。我们将陈述L-函数的特殊值,特别是在0时,与算术函数之间的关系的构造。我们还将给出具有底层域\(\mathbb{Q}(\sqrt{D})\)和\(\math bb{Q}\)的平方和函数之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信