A new optimized iterative method for solving M-matrix linear systems

Pub Date : 2021-11-22 DOI:10.21136/AM.2021.0246-20
Alireza Fakharzadeh Jahromi, Nafiseh Nasseri Shams
{"title":"A new optimized iterative method for solving M-matrix linear systems","authors":"Alireza Fakharzadeh Jahromi,&nbsp;Nafiseh Nasseri Shams","doi":"10.21136/AM.2021.0246-20","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a new iterative method for solving a linear system, whose coefficient matrix is an <i>M</i>-matrix. This method includes four parameters that are obtained by the accelerated overrelaxation (AOR) splitting and using the Taylor approximation. First, under some standard assumptions, we establish the convergence properties of the new method. Then, by minimizing the Frobenius norm of the iteration matrix, we find the optimal parameters. Meanwhile, numerical results on test examples show the efficiency of the new proposed method in contrast with the Hermitian and skew-Hermitian splitting (HSS), AOR methods and a modified version of the AOR (QAOR) iteration.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2021.0246-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present a new iterative method for solving a linear system, whose coefficient matrix is an M-matrix. This method includes four parameters that are obtained by the accelerated overrelaxation (AOR) splitting and using the Taylor approximation. First, under some standard assumptions, we establish the convergence properties of the new method. Then, by minimizing the Frobenius norm of the iteration matrix, we find the optimal parameters. Meanwhile, numerical results on test examples show the efficiency of the new proposed method in contrast with the Hermitian and skew-Hermitian splitting (HSS), AOR methods and a modified version of the AOR (QAOR) iteration.

分享
查看原文
求解m矩阵线性系统的一种新的优化迭代方法
本文提出了一种求解系数矩阵为M-矩阵的线性系统的新迭代方法。该方法包括通过加速超松弛(AOR)分裂和使用泰勒近似获得的四个参数。首先,在一些标准假设下,我们建立了新方法的收敛性。然后,通过最小化迭代矩阵的Frobenius范数,我们找到了最优参数。同时,测试实例的数值结果表明,与Hermitian和偏斜Hermitian分裂(HSS)、AOR方法和AOR迭代的修改版本相比,新方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信