Remarks on the a priori bound for the vorticity of the axisymmetric Navier-Stokes equations

Pub Date : 2021-11-22 DOI:10.21136/AM.2021.0344-20
Zujin Zhang, Chenxuan Tong
{"title":"Remarks on the a priori bound for the vorticity of the axisymmetric Navier-Stokes equations","authors":"Zujin Zhang,&nbsp;Chenxuan Tong","doi":"10.21136/AM.2021.0344-20","DOIUrl":null,"url":null,"abstract":"<div><p>We study the axisymmetric Navier-Stokes equations. In 2010, Loftus-Zhang used a refined test function and re-scaling scheme, and showed that </p><div><div><span>$$\\left| {{\\omega ^r}(x,t)} \\right| + \\left| {{\\omega ^z}(r,t)} \\right| \\leqslant {C \\over {{r^{10}}}},\\,\\,\\,\\,\\,0 &lt; r \\leqslant {1 \\over 2}.$$</span></div></div><p> By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing <i>ω</i><sup><i>r</i></sup>, <i>ω</i><sup><i>z</i></sup> and <i>ω</i><sup><i>θ</i></sup>/<i>r</i> on different hollow cylinders, we are able to improve it and obtain </p><div><div><span>$$\\left| {{\\omega ^r}(x,t)} \\right| + \\left| {{\\omega ^z}(r,t)} \\right| \\leqslant {{C\\left| {\\ln \\,r} \\right|} \\over {{r^{17/2}}}},\\,\\,\\,\\,\\,0 &lt; r \\leqslant {1 \\over 2}.$$</span></div></div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.21136/AM.2021.0344-20.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2021.0344-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the axisymmetric Navier-Stokes equations. In 2010, Loftus-Zhang used a refined test function and re-scaling scheme, and showed that

$$\left| {{\omega ^r}(x,t)} \right| + \left| {{\omega ^z}(r,t)} \right| \leqslant {C \over {{r^{10}}}},\,\,\,\,\,0 < r \leqslant {1 \over 2}.$$

By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing ωr, ωz and ωθ/r on different hollow cylinders, we are able to improve it and obtain

$$\left| {{\omega ^r}(x,t)} \right| + \left| {{\omega ^z}(r,t)} \right| \leqslant {{C\left| {\ln \,r} \right|} \over {{r^{17/2}}}},\,\,\,\,\,0 < r \leqslant {1 \over 2}.$$
分享
查看原文
轴对称Navier-Stokes方程涡度的先验界的注释
我们研究轴对称的Navier-Stokes方程。2010年,Loftus-Zhang使用了一种改进的测试函数和重标方案,并证明了$$\left| {{\omega ^r}(x,t)} \right| + \left| {{\omega ^z}(r,t)} \right| \leqslant {C \over {{r^{10}}}},\,\,\,\,\,0 < r \leqslant {1 \over 2}.$$。通过采用Lei-Navas-Zhang的降维技术,分析不同空心圆柱体上的ωr、ωz和ωθ/r,我们可以对其进行改进,得到 $$\left| {{\omega ^r}(x,t)} \right| + \left| {{\omega ^z}(r,t)} \right| \leqslant {{C\left| {\ln \,r} \right|} \over {{r^{17/2}}}},\,\,\,\,\,0 < r \leqslant {1 \over 2}.$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信