Modified golden ratio algorithms for pseudomonotone equilibrium problems and variational inequalities

Pub Date : 2021-12-20 DOI:10.21136/AM.2021.0180-20
Lulu Yin, Hongwei Liu, Jun Yang
{"title":"Modified golden ratio algorithms for pseudomonotone equilibrium problems and variational inequalities","authors":"Lulu Yin,&nbsp;Hongwei Liu,&nbsp;Jun Yang","doi":"10.21136/AM.2021.0180-20","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a modification of the golden ratio algorithm for solving pseudomonotone equilibrium problems with a Lipschitz-type condition in Hilbert spaces. A new non-monotone stepsize rule is used in the method. Without such an additional condition, the theorem of weak convergence is proved. Furthermore, with strongly pseudomonotone condition, the <i>R</i>-linear convergence rate of the method is established. The results obtained are applied to a variational inequality problem, and the convergence rate of the problem under the condition of error bound is considered. Finally, numerical experiments on several specific problems and comparison with other algorithms show the superiority of the algorithm.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2021.0180-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a modification of the golden ratio algorithm for solving pseudomonotone equilibrium problems with a Lipschitz-type condition in Hilbert spaces. A new non-monotone stepsize rule is used in the method. Without such an additional condition, the theorem of weak convergence is proved. Furthermore, with strongly pseudomonotone condition, the R-linear convergence rate of the method is established. The results obtained are applied to a variational inequality problem, and the convergence rate of the problem under the condition of error bound is considered. Finally, numerical experiments on several specific problems and comparison with other algorithms show the superiority of the algorithm.

分享
查看原文
伪单调平衡问题和变分不等式的修正黄金比例算法
针对Hilbert空间中具有Lipschitz型条件的伪单调平衡问题,我们提出了一种改进的黄金比率算法。该方法采用了一种新的非单调步长规则。在没有这种附加条件的情况下,证明了弱收敛定理。此外,在强伪单调条件下,建立了该方法的R-线性收敛速度。将所得结果应用于一个变分不等式问题,并考虑了该问题在误差界条件下的收敛速度。最后,对几个具体问题进行了数值实验,并与其他算法进行了比较,表明了该算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信