Design of a BR-ABC Algorithm-Based Fuzzy Model for Glucose Detection

Bhumika Gupta, Agya Ram Verma
{"title":"Design of a BR-ABC Algorithm-Based Fuzzy Model for Glucose Detection","authors":"Bhumika Gupta,&nbsp;Agya Ram Verma","doi":"10.1007/s41133-019-0026-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a modeling approach for defining a measured data set obtained from an optical sensing circuit based on the use of a fuzzy reasoning system. A simple but effective optical sensor is designed for in vitro determination of glucose concentrations in an aqueous solution. The measured data used in this study include analog voltages that reflect the absorbance values of three wavelengths measured in different concentrations of glucose from an RGB light-emitting diode (LED). The parameters of the fuzzy models are optimized using the bounded-range artificial bee colony (BR-ABC) algorithm to achieve the desired model performance. The results indicate that the optimized fuzzy model demonstrates high performance quality. The minimum mean square error (MSE) obtained from the singleton fuzzy model with the BR-ABC algorithm is 0.00014, which is better than the reported MSE value achieved with the Takagi–Sugeno fuzzy model.</p></div>","PeriodicalId":100147,"journal":{"name":"Augmented Human Research","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41133-019-0026-1","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Augmented Human Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41133-019-0026-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a modeling approach for defining a measured data set obtained from an optical sensing circuit based on the use of a fuzzy reasoning system. A simple but effective optical sensor is designed for in vitro determination of glucose concentrations in an aqueous solution. The measured data used in this study include analog voltages that reflect the absorbance values of three wavelengths measured in different concentrations of glucose from an RGB light-emitting diode (LED). The parameters of the fuzzy models are optimized using the bounded-range artificial bee colony (BR-ABC) algorithm to achieve the desired model performance. The results indicate that the optimized fuzzy model demonstrates high performance quality. The minimum mean square error (MSE) obtained from the singleton fuzzy model with the BR-ABC algorithm is 0.00014, which is better than the reported MSE value achieved with the Takagi–Sugeno fuzzy model.

Abstract Image

基于BR-ABC算法的葡萄糖检测模糊模型设计
本文提出了一种基于模糊推理系统的建模方法,用于定义从光学传感电路获得的测量数据集。设计了一种简单但有效的光学传感器,用于体外测定水溶液中的葡萄糖浓度。本研究中使用的测量数据包括模拟电压,该模拟电压反映了在RGB发光二极管(LED)的不同葡萄糖浓度下测量的三个波长的吸光度值。使用有界人工蜂群(BR-ABC)算法对模糊模型的参数进行优化,以达到期望的模型性能。结果表明,优化后的模糊模型具有较高的性能。使用BR-ABC算法从单例模糊模型中获得的最小均方误差(MSE)为0.00014,优于使用Takagi–Sugeno模糊模型获得的报告MSE值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信