Differential geometry of immersed surfaces in three-dimensional normed spaces

IF 0.4 4区 数学 Q4 MATHEMATICS
Vitor Balestro, Horst Martini, Ralph Teixeira
{"title":"Differential geometry of immersed surfaces in three-dimensional normed spaces","authors":"Vitor Balestro,&nbsp;Horst Martini,&nbsp;Ralph Teixeira","doi":"10.1007/s12188-020-00219-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study curvature types of immersed surfaces in three-dimensional (normed or) Minkowski spaces. By endowing the surface with a normal vector field, which is a transversal vector field given by the ambient Birkhoff orthogonality, we get an analogue of the Gauss map. Then we can define concepts of principal, Gaussian, and mean curvatures in terms of the eigenvalues of the differential of this map. Considering planar sections containing the normal field, we also define normal curvatures at each point of the surface, and with respect to each tangent direction. We investigate the relations between these curvature types. Further on we prove that, under an additional hypothesis, a compact, connected surface without boundary whose Minkowski Gaussian curvature is constant must be a Minkowski sphere. Since existing literature on the subject of our paper is widely scattered, in the introductory part also a survey of related results is given.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"90 1","pages":"111 - 134"},"PeriodicalIF":0.4000,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-020-00219-7","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-020-00219-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper we study curvature types of immersed surfaces in three-dimensional (normed or) Minkowski spaces. By endowing the surface with a normal vector field, which is a transversal vector field given by the ambient Birkhoff orthogonality, we get an analogue of the Gauss map. Then we can define concepts of principal, Gaussian, and mean curvatures in terms of the eigenvalues of the differential of this map. Considering planar sections containing the normal field, we also define normal curvatures at each point of the surface, and with respect to each tangent direction. We investigate the relations between these curvature types. Further on we prove that, under an additional hypothesis, a compact, connected surface without boundary whose Minkowski Gaussian curvature is constant must be a Minkowski sphere. Since existing literature on the subject of our paper is widely scattered, in the introductory part also a survey of related results is given.

Abstract Image

三维赋范空间中浸入曲面的微分几何
本文研究了三维(赋范或)闵可夫斯基空间中浸入曲面的曲率类型。通过赋予曲面一个法向量场,这是一个由环境Birkhoff正交给出的横向向量场,我们得到了高斯映射的模拟。然后我们可以根据这个映射的微分的特征值来定义主曲率、高斯曲率和平均曲率的概念。考虑包含法向场的平面截面,我们还定义了表面上每个点的法向曲率,以及相对于每个切线方向的法向曲率。我们研究了这些曲率类型之间的关系。进一步证明了在另一个假设下,闵可夫斯基高斯曲率为常数的无边界紧致连通曲面必然是闵可夫斯基球。由于关于本文主题的现有文献非常分散,因此在引言部分也对相关成果进行了综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信