Analytic properties of twisted real-analytic Hermitian Klingen type Eisenstein series and applications

IF 0.4 4区 数学 Q4 MATHEMATICS
Soumya Das, Abhash Kumar Jha
{"title":"Analytic properties of twisted real-analytic Hermitian Klingen type Eisenstein series and applications","authors":"Soumya Das,&nbsp;Abhash Kumar Jha","doi":"10.1007/s12188-019-00206-7","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the meromorphic continuation and the functional equation of a twisted real-analytic Hermitain Eisenstein series of Klingen type, and as a consequence, deduce similar properties for the twisted Dirichlet series associated to a pair of Hermitian modular forms involving their Fourier–Jacobi coefficients. As an application of our result, we prove that infinitely many of the Fourier–Jacobi coefficients of a non-zero Hermitian cusp form do not vanish in any non-trivial arithmetic progression.\n</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"89 2","pages":"105 - 116"},"PeriodicalIF":0.4000,"publicationDate":"2019-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-019-00206-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-019-00206-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the meromorphic continuation and the functional equation of a twisted real-analytic Hermitain Eisenstein series of Klingen type, and as a consequence, deduce similar properties for the twisted Dirichlet series associated to a pair of Hermitian modular forms involving their Fourier–Jacobi coefficients. As an application of our result, we prove that infinitely many of the Fourier–Jacobi coefficients of a non-zero Hermitian cusp form do not vanish in any non-trivial arithmetic progression.

扭曲实解析hermite Klingen型Eisenstein级数的解析性质及其应用
我们证明了Klingen型的扭曲实解析Hermitain Eisenstein级数的亚纯延拓和泛函方程,并由此推导出了与包含傅里叶-雅可比系数的一对厄米模形式相关的扭曲Dirichlet级数的类似性质。作为我们结果的一个应用,我们证明了无穷多个非零厄米尖形式的傅里叶-雅可比系数在任何非平凡等差数列中不消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信