Optimization Design of Acoustic Performance of Underwater Anechoic Coatings

IF 1.7 4区 物理与天体物理
Shuailong Zhou, Zhi Fang
{"title":"Optimization Design of Acoustic Performance of Underwater Anechoic Coatings","authors":"Shuailong Zhou,&nbsp;Zhi Fang","doi":"10.1007/s40857-022-00267-4","DOIUrl":null,"url":null,"abstract":"<div><p>Acoustic coatings with periodically arranged internal cavities have been widely applied to underwater vessels to reduce the underwater sound scattering. In this study, the simulation results from the finite element method (FEM) have been compared with the theoretical solutions based on the transfer matrix theory (TMT), and the reliability of the FEM has been verified. The Nelder-Mead algorithm has been employed to optimize the structure of the coatings and the material parameters with the sound absorption coefficient as the primary optimization objective. A function that characterizes the shape of a two-dimensional axisymmetric cavity has been proposed, and the peak value of the absorption coefficient can be successfully moved to the target frequency by changing the weighting strategy. The results show that the sound absorption coefficient of the optimized coating increases and the peak shape widens in the middle and low frequency band. The optimized axisymmetric cavity significantly improves the sound absorption performance of the anechoic coatings. The optimization algorithm of the cavity structure and material parameters proposed in this study provide an effective pathway for the optimal design of the anechoic coatings.</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-022-00267-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Acoustic coatings with periodically arranged internal cavities have been widely applied to underwater vessels to reduce the underwater sound scattering. In this study, the simulation results from the finite element method (FEM) have been compared with the theoretical solutions based on the transfer matrix theory (TMT), and the reliability of the FEM has been verified. The Nelder-Mead algorithm has been employed to optimize the structure of the coatings and the material parameters with the sound absorption coefficient as the primary optimization objective. A function that characterizes the shape of a two-dimensional axisymmetric cavity has been proposed, and the peak value of the absorption coefficient can be successfully moved to the target frequency by changing the weighting strategy. The results show that the sound absorption coefficient of the optimized coating increases and the peak shape widens in the middle and low frequency band. The optimized axisymmetric cavity significantly improves the sound absorption performance of the anechoic coatings. The optimization algorithm of the cavity structure and material parameters proposed in this study provide an effective pathway for the optimal design of the anechoic coatings.

Abstract Image

水下消声涂层声学性能的优化设计
具有周期性排列内腔的声学涂层已广泛应用于水下船舶,以减少水下声散射。在本研究中,将有限元法(FEM)的模拟结果与基于传递矩阵理论(TMT)的理论解进行了比较,并验证了有限元法的可靠性。以吸声系数为主要优化目标,采用Nelder-Mead算法对涂层结构和材料参数进行了优化。提出了一种表征二维轴对称腔形状的函数,通过改变加权策略,可以成功地将吸收系数的峰值移动到目标频率。结果表明,优化后的涂层在中低频段吸声系数增大,峰值形状变宽。优化后的轴对称腔体显著提高了消声涂层的吸声性能。本研究提出的空腔结构和材料参数的优化算法为消声涂层的优化设计提供了有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acoustics Australia
Acoustics Australia ACOUSTICS-
自引率
5.90%
发文量
24
期刊介绍: Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信