Non-Trivial Periodic Solutions for a Class of Second Order Differential Equations with Large Delay

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Adrian Gomez, Nolbert Morales, Manuel Zamora
{"title":"Non-Trivial Periodic Solutions for a Class of Second Order Differential Equations with Large Delay","authors":"Adrian Gomez,&nbsp;Nolbert Morales,&nbsp;Manuel Zamora","doi":"10.1007/s10440-023-00613-2","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a result on the existence of a positive periodic solution for the following class of delay equations </p><div><div><span>$$ \\theta ''(t)-\\theta (t)+f(\\theta (t-r))=0. $$</span></div></div><p> In particular, we find an infinite family of disjoint intervals having the following property: if the delay is within one of these intervals, then the equation admits a non-trivial and even <span>\\(2r\\)</span>-periodic solution. Furthermore, the length of these intervals is constant and depends on the size of the term <span>\\(|f'(\\eta )|\\)</span>, where <span>\\(\\eta \\)</span> is the unique positive equilibrium point of the equation. Consequently, we can find periodic solutions for arbitrarily large delays.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"188 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-023-00613-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a result on the existence of a positive periodic solution for the following class of delay equations

$$ \theta ''(t)-\theta (t)+f(\theta (t-r))=0. $$

In particular, we find an infinite family of disjoint intervals having the following property: if the delay is within one of these intervals, then the equation admits a non-trivial and even \(2r\)-periodic solution. Furthermore, the length of these intervals is constant and depends on the size of the term \(|f'(\eta )|\), where \(\eta \) is the unique positive equilibrium point of the equation. Consequently, we can find periodic solutions for arbitrarily large delays.

Abstract Image

一类大时滞二阶微分方程的非平凡周期解
我们给出了一个关于以下一类时滞方程$$\theta''(t)-\theta(t)+f(\theta(t-r))=0的正周期解存在性的结果特别地,我们发现一个不相交区间的无限族具有以下性质:如果延迟在这些区间中的一个区间内,则方程允许非平凡的偶周期解。此外,这些区间的长度是常数,并且取决于项\(|f'(\eta)|\)的大小,其中\(\eta\)是方程的唯一正平衡点。因此,我们可以找到任意大延迟的周期解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信