Split buildings of type \(\mathsf {F_4}\) in buildings of type \(\mathsf {E_6}\)

IF 0.4 4区 数学 Q4 MATHEMATICS
Anneleen De Schepper, N. S. Narasimha Sastry, Hendrik Van Maldeghem
{"title":"Split buildings of type \\(\\mathsf {F_4}\\) in buildings of type \\(\\mathsf {E_6}\\)","authors":"Anneleen De Schepper,&nbsp;N. S. Narasimha Sastry,&nbsp;Hendrik Van Maldeghem","doi":"10.1007/s12188-017-0190-5","DOIUrl":null,"url":null,"abstract":"<div><p>A symplectic polarity of a building <span>\\(\\varDelta \\)</span> of type <span>\\(\\mathsf {E_6}\\)</span> is a polarity whose fixed point structure is a building of type <span>\\(\\mathsf {F_4}\\)</span> containing residues isomorphic to symplectic polar spaces (i.e., so-called <i>split buildings</i> of type <span>\\(\\mathsf {F_4}\\)</span>). In this paper, we show in a geometric way that every building of type <span>\\(\\mathsf {E_6}\\)</span> contains, up to conjugacy, a unique class of symplectic polarities. We also show that the natural point-line geometry of each split building of type <span>\\(\\mathsf {F_4}\\)</span> fully embedded in the natural point-line geometry of <span>\\(\\varDelta \\)</span> arises from a symplectic polarity.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2018-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-017-0190-5","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-017-0190-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

A symplectic polarity of a building \(\varDelta \) of type \(\mathsf {E_6}\) is a polarity whose fixed point structure is a building of type \(\mathsf {F_4}\) containing residues isomorphic to symplectic polar spaces (i.e., so-called split buildings of type \(\mathsf {F_4}\)). In this paper, we show in a geometric way that every building of type \(\mathsf {E_6}\) contains, up to conjugacy, a unique class of symplectic polarities. We also show that the natural point-line geometry of each split building of type \(\mathsf {F_4}\) fully embedded in the natural point-line geometry of \(\varDelta \) arises from a symplectic polarity.

在类型的建筑物中拆分类型为\(\mathsf {F_4}\)的建筑物 \(\mathsf {E_6}\)
类型为\(\mathsf{E_6}\)的建筑物\(\varDelta\)的辛极性是其不动点结构为包含同构于辛极性空间的残基的类型为\。在本文中,我们用几何的方法证明了每一个类型为\(\mathsf{E_6}\)的建筑,直到共轭,都包含一类独特的辛极性。我们还证明了每一个类型为\(\mathsf{F_4}\)的分裂建筑的自然点线几何完全嵌入\(\varDelta\)的自然点-线几何中是由辛极性引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信