Umangi H. Mehta, Daya S. Kaul, Dane Westerdahl, Zhi Ning, Kai Zhang, Li Sun, Peng Wei, Hardik H. Gajjar, Jai D. Jeyaraman, Mansi V. Patel, Rutu R. Joshi
{"title":"Understanding the Sources of Heavy Metal Pollution in Ambient Air of Neighboring a Solid Waste Landfill Site","authors":"Umangi H. Mehta, Daya S. Kaul, Dane Westerdahl, Zhi Ning, Kai Zhang, Li Sun, Peng Wei, Hardik H. Gajjar, Jai D. Jeyaraman, Mansi V. Patel, Rutu R. Joshi","doi":"10.1007/s41810-022-00131-y","DOIUrl":null,"url":null,"abstract":"<p>With growing urbanization and industrialization, problems such as poor disposal practices of solid waste and ensuing uncontrolled air pollution adjacent to landfill pose threats to human and environmental wellbeing. Ahmedabad is highly polluted urban city in India and unregulated burning of solid waste further aggravates already appalling situation caused by a large number of industries and vehicle fleets. The present work was carried out to understand sources of metals in ambient air surrounding a municipal landfill known as Pirana. For the study, surrounding area of the landfill was divided into 100 rectangular cells covering almost 5 km distance from its outer boundary. A location representing major land-use feature of each cell was classified. Sampling was carried out at these locations. A total of 100 PM<sub>5.0</sub> samples were collected. Sampling was conducted for 3 h at each sampling location with samples collected on quartz filter paper. Measurements were performed over approximately 6 months from August to February, 2018. The filters were analyzed for metals using an Atomic Absorption Spectrometer. These measurements were used to identify pollution sources using positive matrix factorization technique and locate the hotspots of emission sources of heavy metals pollution<b>.</b> Five major sources namely, ferrous industry, nonferrous industry, vehicular emissions, re-suspended dust and solid waste burning/industrial coal combustion were identified and quantified. The average contributions of these sources to heavy metals were 20.7 ± 16.2, 18.4 ± 14.3, 19.9 ± 13.6, 21.4 ± 17.6, and 19.6 ± 10.6%, respectively. The average contribution from solid waste and industrial coal combustion is only 19.6% against the total from the combined remaining sources (~ 80.4), which means contribution from former will be lesser. Thus, solid waste burning is minor contributor for degradation of air quality; presence of many other sources around the site is actually the dominant cause of pollution.</p>","PeriodicalId":36991,"journal":{"name":"Aerosol Science and Engineering","volume":"6 2","pages":"161 - 175"},"PeriodicalIF":1.6000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s41810-022-00131-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
With growing urbanization and industrialization, problems such as poor disposal practices of solid waste and ensuing uncontrolled air pollution adjacent to landfill pose threats to human and environmental wellbeing. Ahmedabad is highly polluted urban city in India and unregulated burning of solid waste further aggravates already appalling situation caused by a large number of industries and vehicle fleets. The present work was carried out to understand sources of metals in ambient air surrounding a municipal landfill known as Pirana. For the study, surrounding area of the landfill was divided into 100 rectangular cells covering almost 5 km distance from its outer boundary. A location representing major land-use feature of each cell was classified. Sampling was carried out at these locations. A total of 100 PM5.0 samples were collected. Sampling was conducted for 3 h at each sampling location with samples collected on quartz filter paper. Measurements were performed over approximately 6 months from August to February, 2018. The filters were analyzed for metals using an Atomic Absorption Spectrometer. These measurements were used to identify pollution sources using positive matrix factorization technique and locate the hotspots of emission sources of heavy metals pollution. Five major sources namely, ferrous industry, nonferrous industry, vehicular emissions, re-suspended dust and solid waste burning/industrial coal combustion were identified and quantified. The average contributions of these sources to heavy metals were 20.7 ± 16.2, 18.4 ± 14.3, 19.9 ± 13.6, 21.4 ± 17.6, and 19.6 ± 10.6%, respectively. The average contribution from solid waste and industrial coal combustion is only 19.6% against the total from the combined remaining sources (~ 80.4), which means contribution from former will be lesser. Thus, solid waste burning is minor contributor for degradation of air quality; presence of many other sources around the site is actually the dominant cause of pollution.
期刊介绍:
ASE is an international journal that publishes high-quality papers, communications, and discussion that advance aerosol science and engineering. Acceptable article forms include original research papers, review articles, letters, commentaries, news and views, research highlights, editorials, correspondence, and new-direction columns. ASE emphasizes the application of aerosol technology to both environmental and technical issues, and it provides a platform not only for basic research but also for industrial interests. We encourage scientists and researchers to submit papers that will advance our knowledge of aerosols and highlight new approaches for aerosol studies and new technologies for pollution control. ASE promotes cutting-edge studies of aerosol science and state-of-art instrumentation, but it is not limited to academic topics and instead aims to bridge the gap between basic science and industrial applications. ASE accepts papers covering a broad range of aerosol-related topics, including aerosol physical and chemical properties, composition, formation, transport and deposition, numerical simulation of air pollution incidents, chemical processes in the atmosphere, aerosol control technologies and industrial applications. In addition, ASE welcomes papers involving new and advanced methods and technologies that focus on aerosol pollution, sampling and analysis, including the invention and development of instrumentation, nanoparticle formation, nano technology, indoor and outdoor air quality monitoring, air pollution control, and air pollution remediation and feasibility assessments.