A Free Boundary Problem for Some Modified Predator-Prey Model in a Higher Dimensional Environment

Pub Date : 2022-06-14 DOI:10.21136/AM.2022.0297-20
Hongmei Cheng, Qinhe Fang, Yang Xia
{"title":"A Free Boundary Problem for Some Modified Predator-Prey Model in a Higher Dimensional Environment","authors":"Hongmei Cheng,&nbsp;Qinhe Fang,&nbsp;Yang Xia","doi":"10.21136/AM.2022.0297-20","DOIUrl":null,"url":null,"abstract":"<div><p>We focus on the free boundary problems for a Leslie-Gower predator-prey model with radial symmetry in a higher dimensional environment that is initially well populated by the prey. This free boundary problem is used to describe the spreading of a new introduced predator. We first establish that a spreading-vanishing dichotomy holds for this model. Namely, the predator either successfully spreads to the entire space as <i>t</i> goes to infinity and survives in the new environment, or it fails to establish and dies out in the long term. The longterm behavior of the solution and the criteria for spreading and vanishing are also obtained. Moreover, when spreading of the predator happens, we provide some rough estimates of the spreading speed.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2022.0297-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We focus on the free boundary problems for a Leslie-Gower predator-prey model with radial symmetry in a higher dimensional environment that is initially well populated by the prey. This free boundary problem is used to describe the spreading of a new introduced predator. We first establish that a spreading-vanishing dichotomy holds for this model. Namely, the predator either successfully spreads to the entire space as t goes to infinity and survives in the new environment, or it fails to establish and dies out in the long term. The longterm behavior of the solution and the criteria for spreading and vanishing are also obtained. Moreover, when spreading of the predator happens, we provide some rough estimates of the spreading speed.

分享
查看原文
高维环境下一类改进捕食-食饵模型的自由边界问题
我们关注的是Leslie Gower捕食-被捕食模型在高维环境中的自由边界问题,该模型具有径向对称性,初始环境中猎物分布良好。这个自由边界问题被用来描述一个新引入的捕食者的传播。我们首先建立了一个传播消失的二分法适用于这个模型。也就是说,捕食者要么在t达到无穷大时成功地传播到整个空间,并在新环境中生存,要么未能建立并长期消亡。文中还得到了解的长期性态以及扩散和消失的判据。此外,当捕食者扩散时,我们提供了一些传播速度的粗略估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信