On the growth and zeros of polynomials attached to arithmetic functions

IF 0.4 4区 数学 Q4 MATHEMATICS
Bernhard Heim, Markus Neuhauser
{"title":"On the growth and zeros of polynomials attached to arithmetic functions","authors":"Bernhard Heim,&nbsp;Markus Neuhauser","doi":"10.1007/s12188-021-00241-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we investigate growth properties and the zero distribution of polynomials attached to arithmetic functions <i>g</i> and <i>h</i>, where <i>g</i> is normalized, of moderate growth, and <span>\\(0&lt;h(n) \\le h(n+1)\\)</span>. We put <span>\\(P_0^{g,h}(x)=1\\)</span> and </p><div><div><span>$$\\begin{aligned} P_n^{g,h}(x) := \\frac{x}{h(n)} \\sum _{k=1}^{n} g(k) \\, P_{n-k}^{g,h}(x). \\end{aligned}$$</span></div></div><p>As an application we obtain the best known result on the domain of the non-vanishing of the Fourier coefficients of powers of the Dedekind <span>\\(\\eta \\)</span>-function. Here, <i>g</i> is the sum of divisors and <i>h</i> the identity function. Kostant’s result on the representation of simple complex Lie algebras and Han’s results on the Nekrasov–Okounkov hook length formula are extended. The polynomials are related to reciprocals of Eisenstein series, Klein’s <i>j</i>-invariant, and Chebyshev polynomials of the second kind.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"91 2","pages":"305 - 323"},"PeriodicalIF":0.4000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-021-00241-3","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-021-00241-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we investigate growth properties and the zero distribution of polynomials attached to arithmetic functions g and h, where g is normalized, of moderate growth, and \(0<h(n) \le h(n+1)\). We put \(P_0^{g,h}(x)=1\) and

$$\begin{aligned} P_n^{g,h}(x) := \frac{x}{h(n)} \sum _{k=1}^{n} g(k) \, P_{n-k}^{g,h}(x). \end{aligned}$$

As an application we obtain the best known result on the domain of the non-vanishing of the Fourier coefficients of powers of the Dedekind \(\eta \)-function. Here, g is the sum of divisors and h the identity function. Kostant’s result on the representation of simple complex Lie algebras and Han’s results on the Nekrasov–Okounkov hook length formula are extended. The polynomials are related to reciprocals of Eisenstein series, Klein’s j-invariant, and Chebyshev polynomials of the second kind.

关于算术函数上多项式的增长与零
在本文中,我们研究了附加于算术函数g和h的多项式的增长性质和零分布,其中g是归一化的,具有中等增长和\(0<;h(n)\le h(n+1)\)。我们把\(P_0^{g,h}(x)=1\)和$$\开始{对齐}P_n^{g,h}(x):=\frac{x}{h(n)}\sum_{k=1}^{n}g(k)\,P_{n-k}^{g,h}(x)。\end{aligned}$$作为一个应用,我们在Dedekind\(\eta\)-函数的傅立叶幂系数的不消失域上获得了最著名的结果。这里,g是除数的和,h是单位函数。推广了Kostant关于简单复李代数表示的结果和Han关于Nekrasov–Okounkov钩长公式的结果。这些多项式与艾森斯坦级数的倒数、克莱因j不变量和第二类切比雪夫多项式有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信