{"title":"Aerosol Load-Cloud Cover Correlation: A Potential Clue for the Investigation of Aerosol Indirect Impact on Climate of Europe and Africa","authors":"Chukwuma Moses Anoruo, Onyiyechi Caroline Ibe, Kelechi Nnaemeka Ndubuisi","doi":"10.1007/s41810-022-00160-7","DOIUrl":null,"url":null,"abstract":"<div><p>Aerosol optical depth (AOD) is a key parameter in atmospheric pollution and climate processes. In this paper, we compared the aerosol loading (550 nm) from 2000–2001 to 2017–2018 and total cloud cover using seasonal, latitudinal and solar activity cycle data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and determined the spectral optical range from the region of relatively clear air (Europe) to the region of more considerable biomass burning activity (Africa). To remove the large annual cycle influence, the data were deseasonalized, allowing exploration of inter-annual variability. Deseasonalization obtains the time series AOD monthly average anomaly over the years for each grid cell. We employ the solar flux index over the regions by correlating the absolute percentage mean difference of aerosol and cloud interactions and validate the result by modeling aerosol and cloud data from 2020 to 2021 using a neural network. AOD and solar flux for Africa show correlations of − 0.638 for 2000–2001 and − 0.218 for Europe, and at the same time, AOD with cloud cover for Africa shows correlations of − 0.129 and 0.360 for Europe. The analysis confirmed an inverse weak correlation of aerosols with cloud cover. This would help resolve the knowledge gap by demonstrating that aerosol and cloud interactions are not only dependent on region but also more dependent on the solar activity cycle and seasons. We observed dependence by the latitude of the aerosol load and solar flux index.\n</p></div>","PeriodicalId":36991,"journal":{"name":"Aerosol Science and Engineering","volume":"7 1","pages":"23 - 35"},"PeriodicalIF":1.6000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s41810-022-00160-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Aerosol optical depth (AOD) is a key parameter in atmospheric pollution and climate processes. In this paper, we compared the aerosol loading (550 nm) from 2000–2001 to 2017–2018 and total cloud cover using seasonal, latitudinal and solar activity cycle data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and determined the spectral optical range from the region of relatively clear air (Europe) to the region of more considerable biomass burning activity (Africa). To remove the large annual cycle influence, the data were deseasonalized, allowing exploration of inter-annual variability. Deseasonalization obtains the time series AOD monthly average anomaly over the years for each grid cell. We employ the solar flux index over the regions by correlating the absolute percentage mean difference of aerosol and cloud interactions and validate the result by modeling aerosol and cloud data from 2020 to 2021 using a neural network. AOD and solar flux for Africa show correlations of − 0.638 for 2000–2001 and − 0.218 for Europe, and at the same time, AOD with cloud cover for Africa shows correlations of − 0.129 and 0.360 for Europe. The analysis confirmed an inverse weak correlation of aerosols with cloud cover. This would help resolve the knowledge gap by demonstrating that aerosol and cloud interactions are not only dependent on region but also more dependent on the solar activity cycle and seasons. We observed dependence by the latitude of the aerosol load and solar flux index.
期刊介绍:
ASE is an international journal that publishes high-quality papers, communications, and discussion that advance aerosol science and engineering. Acceptable article forms include original research papers, review articles, letters, commentaries, news and views, research highlights, editorials, correspondence, and new-direction columns. ASE emphasizes the application of aerosol technology to both environmental and technical issues, and it provides a platform not only for basic research but also for industrial interests. We encourage scientists and researchers to submit papers that will advance our knowledge of aerosols and highlight new approaches for aerosol studies and new technologies for pollution control. ASE promotes cutting-edge studies of aerosol science and state-of-art instrumentation, but it is not limited to academic topics and instead aims to bridge the gap between basic science and industrial applications. ASE accepts papers covering a broad range of aerosol-related topics, including aerosol physical and chemical properties, composition, formation, transport and deposition, numerical simulation of air pollution incidents, chemical processes in the atmosphere, aerosol control technologies and industrial applications. In addition, ASE welcomes papers involving new and advanced methods and technologies that focus on aerosol pollution, sampling and analysis, including the invention and development of instrumentation, nanoparticle formation, nano technology, indoor and outdoor air quality monitoring, air pollution control, and air pollution remediation and feasibility assessments.