Existence and uniqueness of renormalized solutions for initial boundary value parabolic problems with possibly very singular right-hand side

IF 0.4 4区 数学 Q4 MATHEMATICS
M. Abdellaoui, H. Redwane
{"title":"Existence and uniqueness of renormalized solutions for initial boundary value parabolic problems with possibly very singular right-hand side","authors":"M. Abdellaoui,&nbsp;H. Redwane","doi":"10.1007/s12188-022-00262-6","DOIUrl":null,"url":null,"abstract":"<div><p>We study the existence and uniqueness of <i>renormalized</i> solutions for initial boundary value problems of the type </p><div><div><span>$$\\begin{aligned} \\left( {\\mathcal {P}}_{b}^{1}\\right) \\quad \\left\\{ \\begin{aligned} u_{t}-\\text {div}(a(t,x,\\nabla u))=H(u)\\mu \\text { in }Q:=(0,T)\\times \\Omega ,\\\\ u(0,x)=u_{0}(x)\\text { in }\\Omega ,\\ u(t,x)=0\\text { on }(0,T)\\times \\partial \\Omega , \\end{aligned}\\right. \\end{aligned}$$</span></div></div><p>where <span>\\(u_{0}\\in L^{1}(\\Omega )\\)</span>, <span>\\(\\mu \\in {\\mathcal {M}}_{b}(Q)\\)</span> is a general <i>Radon</i> measure on <i>Q</i> and <span>\\(H\\in C_{b}^{0}({\\mathbb {R}})\\)</span> is a continuous positive bounded function on <span>\\({\\mathbb {R}}\\)</span>. The difficulties in the study of such problems concern the possibly very singular right-hand side that forces the choice of a suitable formulation that ensures both existence and uniqueness of solution. Using similar techniques, we will prove existence/nonexistence results of the auxiliary problem </p><div><div><span>$$\\begin{aligned} \\left( {\\mathcal {P}}_{b}^{2}\\right) \\quad \\left\\{ \\begin{aligned}&amp;u_{t}-\\text {div}(a(t,x,\\nabla u))+g(x,u)|\\nabla u|^{2}=\\mu \\text { in }Q:=(0,T)\\times \\Omega ,\\\\&amp;u(0,x)=u_{0}(x)\\text { in }\\Omega ,\\ u(t,x)=0\\text { on }(0,T)\\times \\partial \\Omega , \\end{aligned}\\right. \\end{aligned}$$</span></div></div><p>under the assumption that <i>g</i> satisfies a sign condition and the nonlinear term depends on both <i>x</i>, <i>u</i> and its gradient. Thus, our results improve and complete the previous known existence results for problems <span>\\(\\left( {\\mathcal {P}}_{b}^{1,2}\\right) \\)</span>.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-022-00262-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the existence and uniqueness of renormalized solutions for initial boundary value problems of the type

$$\begin{aligned} \left( {\mathcal {P}}_{b}^{1}\right) \quad \left\{ \begin{aligned} u_{t}-\text {div}(a(t,x,\nabla u))=H(u)\mu \text { in }Q:=(0,T)\times \Omega ,\\ u(0,x)=u_{0}(x)\text { in }\Omega ,\ u(t,x)=0\text { on }(0,T)\times \partial \Omega , \end{aligned}\right. \end{aligned}$$

where \(u_{0}\in L^{1}(\Omega )\), \(\mu \in {\mathcal {M}}_{b}(Q)\) is a general Radon measure on Q and \(H\in C_{b}^{0}({\mathbb {R}})\) is a continuous positive bounded function on \({\mathbb {R}}\). The difficulties in the study of such problems concern the possibly very singular right-hand side that forces the choice of a suitable formulation that ensures both existence and uniqueness of solution. Using similar techniques, we will prove existence/nonexistence results of the auxiliary problem

$$\begin{aligned} \left( {\mathcal {P}}_{b}^{2}\right) \quad \left\{ \begin{aligned}&u_{t}-\text {div}(a(t,x,\nabla u))+g(x,u)|\nabla u|^{2}=\mu \text { in }Q:=(0,T)\times \Omega ,\\&u(0,x)=u_{0}(x)\text { in }\Omega ,\ u(t,x)=0\text { on }(0,T)\times \partial \Omega , \end{aligned}\right. \end{aligned}$$

under the assumption that g satisfies a sign condition and the nonlinear term depends on both x, u and its gradient. Thus, our results improve and complete the previous known existence results for problems \(\left( {\mathcal {P}}_{b}^{1,2}\right) \).

可能有非常奇异的初始边值抛物型问题重整解的存在唯一性
研究了一类$$\begin{aligned} \left( {\mathcal {P}}_{b}^{1}\right) \quad \left\{ \begin{aligned} u_{t}-\text {div}(a(t,x,\nabla u))=H(u)\mu \text { in }Q:=(0,T)\times \Omega ,\\ u(0,x)=u_{0}(x)\text { in }\Omega ,\ u(t,x)=0\text { on }(0,T)\times \partial \Omega , \end{aligned}\right. \end{aligned}$$型初边值问题的重整解的存在唯一性,其中\(u_{0}\in L^{1}(\Omega )\), \(\mu \in {\mathcal {M}}_{b}(Q)\)是Q上的一般Radon测度,\(H\in C_{b}^{0}({\mathbb {R}})\)是\({\mathbb {R}}\)上的连续正有界函数。研究这类问题的困难在于可能非常奇异的右边,这迫使选择一个适当的公式,以确保解的存在性和唯一性。利用类似的技术,我们将证明辅助问题$$\begin{aligned} \left( {\mathcal {P}}_{b}^{2}\right) \quad \left\{ \begin{aligned}&u_{t}-\text {div}(a(t,x,\nabla u))+g(x,u)|\nabla u|^{2}=\mu \text { in }Q:=(0,T)\times \Omega ,\\&u(0,x)=u_{0}(x)\text { in }\Omega ,\ u(t,x)=0\text { on }(0,T)\times \partial \Omega , \end{aligned}\right. \end{aligned}$$的存在性/不存在性结果,假设g满足符号条件,且非线性项同时依赖于x, u及其梯度。因此,我们的结果改进并完善了先前已知的问题\(\left( {\mathcal {P}}_{b}^{1,2}\right) \)的存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信