Bandgaps Creation with High Acoustic Losses in Gradient-Based Sonic Crystals

IF 1.7 4区 物理与天体物理
D. Panda, A. R. Mohanty
{"title":"Bandgaps Creation with High Acoustic Losses in Gradient-Based Sonic Crystals","authors":"D. Panda,&nbsp;A. R. Mohanty","doi":"10.1007/s40857-021-00242-5","DOIUrl":null,"url":null,"abstract":"<div><p>A design of the sonic crystal (SC), called the gradient-based sonic crystal (GBSC), that uses the gradient of properties of the SC array is proposed as an improvement over the traditional design of SCs. The gradient of properties is obtained by changing the resonator dimensions and the distance between them throughout the array instead of keeping them uniform. Because of this non-uniformity, the supercell approximation was used to handle the non-ideal periodic conditions it induces in the array. GBSCs in non-uniform rectangular and triangular lattices were designed and analyzed using the finite element method. The results show that the GBSCs widen existing bandgaps, create new bandgaps, induce high acoustical losses compared to the uniform SCs of Helmholtz resonators (HR) or hollow scatterers (HS) and have similar space requirements. Therefore, the GBSCs can be used for acoustic attenuation in low-mid-high frequency bands. Parameters such as increasing or decreasing order of the resonator size and distance, and the resonator orientation were found to influence the attenuation by the GBSCs. Experiments were conducted on the traditional uniform HS sonic crystals and HR sonic crystals and their finite element (FE) models were developed which were later useful for developing robust FE models of the GBSCs.</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40857-021-00242-5","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-021-00242-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A design of the sonic crystal (SC), called the gradient-based sonic crystal (GBSC), that uses the gradient of properties of the SC array is proposed as an improvement over the traditional design of SCs. The gradient of properties is obtained by changing the resonator dimensions and the distance between them throughout the array instead of keeping them uniform. Because of this non-uniformity, the supercell approximation was used to handle the non-ideal periodic conditions it induces in the array. GBSCs in non-uniform rectangular and triangular lattices were designed and analyzed using the finite element method. The results show that the GBSCs widen existing bandgaps, create new bandgaps, induce high acoustical losses compared to the uniform SCs of Helmholtz resonators (HR) or hollow scatterers (HS) and have similar space requirements. Therefore, the GBSCs can be used for acoustic attenuation in low-mid-high frequency bands. Parameters such as increasing or decreasing order of the resonator size and distance, and the resonator orientation were found to influence the attenuation by the GBSCs. Experiments were conducted on the traditional uniform HS sonic crystals and HR sonic crystals and their finite element (FE) models were developed which were later useful for developing robust FE models of the GBSCs.

Abstract Image

基于梯度的声波晶体中高声损失带隙的产生
提出了一种基于梯度的声晶体(GBSC)设计方法,该方法利用声晶体阵列的梯度特性对传统声晶体设计进行了改进。特性的梯度是通过改变谐振腔的尺寸和它们在整个阵列中的距离来获得的,而不是保持它们的均匀。由于这种不均匀性,采用超级单体近似来处理它在阵列中引起的非理想周期条件。采用有限元法对非均匀矩形和三角形晶格的GBSCs进行了设计和分析。结果表明,与亥姆霍兹谐振腔(HR)或空心散射体(HS)的均匀超导相比,GBSCs拓宽了现有的带隙,产生了新的带隙,导致了高的声损失,并且具有相似的空间要求。因此,GBSCs可用于中低频段的声衰减。研究发现,谐振腔尺寸和距离的增减顺序以及谐振腔的取向等参数对GBSCs的衰减有影响。分别对传统的均匀HS和HR超声晶体进行了实验,建立了它们的有限元模型,为建立GBSCs的鲁棒有限元模型提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acoustics Australia
Acoustics Australia ACOUSTICS-
自引率
5.90%
发文量
24
期刊介绍: Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信