Triviality of Iwasawa module associated to some abelian fields of prime conductors

IF 0.4 4区 数学 Q4 MATHEMATICS
Humio Ichimura
{"title":"Triviality of Iwasawa module associated to some abelian fields of prime conductors","authors":"Humio Ichimura","doi":"10.1007/s12188-017-0186-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>p</i> be an odd prime number and <span>\\(\\ell \\)</span> an odd prime number dividing <span>\\(p-1\\)</span>. We denote by <span>\\(F=F_{p,\\ell }\\)</span> the real abelian field of conductor <i>p</i> and degree <span>\\(\\ell \\)</span>, and by <span>\\(h_F\\)</span> the class number of <i>F</i>. For a prime number <span>\\(r \\ne p,\\,\\ell \\)</span>, let <span>\\(F_{\\infty }\\)</span> be the cyclotomic <span>\\(\\mathbb {Z}_r\\)</span>-extension over <i>F</i>, and <span>\\(M_{\\infty }/F_{\\infty }\\)</span> the maximal pro-<i>r</i> abelian extension unramified outside <i>r</i>. We prove that <span>\\(M_{\\infty }\\)</span> coincides with <span>\\(F_{\\infty }\\)</span> and consequently <span>\\(h_F\\)</span> is not divisible by <i>r</i> when <i>r</i> is a primitive root modulo <span>\\(\\ell \\)</span> and <i>r</i> is smaller than an explicit constant depending on <i>p</i>.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"88 1","pages":"51 - 66"},"PeriodicalIF":0.4000,"publicationDate":"2017-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-017-0186-1","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-017-0186-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

Let p be an odd prime number and \(\ell \) an odd prime number dividing \(p-1\). We denote by \(F=F_{p,\ell }\) the real abelian field of conductor p and degree \(\ell \), and by \(h_F\) the class number of F. For a prime number \(r \ne p,\,\ell \), let \(F_{\infty }\) be the cyclotomic \(\mathbb {Z}_r\)-extension over F, and \(M_{\infty }/F_{\infty }\) the maximal pro-r abelian extension unramified outside r. We prove that \(M_{\infty }\) coincides with \(F_{\infty }\) and consequently \(h_F\) is not divisible by r when r is a primitive root modulo \(\ell \) and r is smaller than an explicit constant depending on p.

与一些素数导体阿贝尔场相关的Iwasawa模的平凡性
设p是奇质数 \(\ell \) 一个奇素数除法 \(p-1\)。我们用 \(F=F_{p,\ell }\) 导体p的实阿贝尔场和度 \(\ell \),和 \(h_F\) 对于素数f的类数 \(r \ne p,\,\ell \),让 \(F_{\infty }\) 做切眼手术 \(\mathbb {Z}_r\)-对F的扩展 \(M_{\infty }/F_{\infty }\) 我们证明了在r外无分支的最大亲r abel扩展 \(M_{\infty }\) 与…一致 \(F_{\infty }\) 因此 \(h_F\) 当r是原根模时不能被r整除 \(\ell \) r小于与p相关的显式常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信