{"title":"Modular forms and q-analogues of modified double zeta values","authors":"Henrik Bachmann","doi":"10.1007/s12188-020-00227-7","DOIUrl":null,"url":null,"abstract":"<div><p>We present explicit formulas for Hecke eigenforms as linear combinations of q-analogues of modified double zeta values. As an application, we obtain period polynomial relations and sum formulas for these modified double zeta values. These relations have similar shapes as the period polynomial relations of Gangl, Kaneko, and Zagier and the usual sum formulas for classical double zeta values.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-020-00227-7","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-020-00227-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
We present explicit formulas for Hecke eigenforms as linear combinations of q-analogues of modified double zeta values. As an application, we obtain period polynomial relations and sum formulas for these modified double zeta values. These relations have similar shapes as the period polynomial relations of Gangl, Kaneko, and Zagier and the usual sum formulas for classical double zeta values.
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.