Fractional nonlinear energy sinks

IF 4.5 2区 工程技术 Q1 MATHEMATICS, APPLIED
Shengtao Zhang, Jiaxi Zhou, Hu Ding, Kai Wang, Daolin Xu
{"title":"Fractional nonlinear energy sinks","authors":"Shengtao Zhang,&nbsp;Jiaxi Zhou,&nbsp;Hu Ding,&nbsp;Kai Wang,&nbsp;Daolin Xu","doi":"10.1007/s10483-023-2984-9","DOIUrl":null,"url":null,"abstract":"<div><p>The cubic or third-power (TP) nonlinear energy sink (NES) has been proven to be an effective method for vibration suppression, owing to the occurrence of targeted energy transfer (TET). However, TET is unable to be triggered by the low initial energy input, and thus the TP NES would get failed under low-amplitude vibration. To resolve this issue, a new type of NES with fractional nonlinearity, e.g., one-third-power (OTP) nonlinearity, is proposed. The dynamic behaviors of a linear oscillator (LO) with an OTP NES are investigated numerically, and then both the TET feature and the vibration attenuation performance are evaluated. Moreover, an analogy circuit is established, and the circuit simulations are carried out to verify the design concept of the OTP NES. It is found that the threshold for TET of the OTP NES is two orders of magnitude smaller than that of the TP NES. The parametric analysis shows that a heavier mass or a lower stiffness coefficient of the NES is beneficial to the occurrence of TET in the OTP NES system. Additionally, significant energy transfer is usually accompanied with efficient energy dissipation. Consequently, the OTP NES can realize TET under low initial input energy, which should be a promising approach for micro-vibration suppression.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 5","pages":"711 - 726"},"PeriodicalIF":4.5000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10483-023-2984-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-2984-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The cubic or third-power (TP) nonlinear energy sink (NES) has been proven to be an effective method for vibration suppression, owing to the occurrence of targeted energy transfer (TET). However, TET is unable to be triggered by the low initial energy input, and thus the TP NES would get failed under low-amplitude vibration. To resolve this issue, a new type of NES with fractional nonlinearity, e.g., one-third-power (OTP) nonlinearity, is proposed. The dynamic behaviors of a linear oscillator (LO) with an OTP NES are investigated numerically, and then both the TET feature and the vibration attenuation performance are evaluated. Moreover, an analogy circuit is established, and the circuit simulations are carried out to verify the design concept of the OTP NES. It is found that the threshold for TET of the OTP NES is two orders of magnitude smaller than that of the TP NES. The parametric analysis shows that a heavier mass or a lower stiffness coefficient of the NES is beneficial to the occurrence of TET in the OTP NES system. Additionally, significant energy transfer is usually accompanied with efficient energy dissipation. Consequently, the OTP NES can realize TET under low initial input energy, which should be a promising approach for micro-vibration suppression.

分数阶非线性能量汇
由于目标能量转移(TET)的存在,三次或三次幂非线性能量汇(NES)已被证明是一种有效的振动抑制方法。然而,较低的初始能量输入无法触发TET,导致TP NES在低振幅振动下失效。为了解决这一问题,提出了一种新型的分数阶非线性神经网络,即1 / 3幂非线性。采用数值方法研究了带OTP NES的线性振荡器的动态特性,并对其TET特性和减振性能进行了评价。此外,还建立了一个模拟电路,并进行了电路仿真,验证了OTP NES的设计理念。研究发现,OTP网元的TET阈值比TP网元的TET阈值小两个数量级。参数分析表明,较重的网元质量或较低的网元刚度系数有利于OTP网元系统中TET的发生。此外,大量的能量转移通常伴随着有效的能量耗散。因此,OTP NES可以在较低的初始输入能量下实现TET,这应该是一种很有前途的微振动抑制方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
9.10%
发文量
106
审稿时长
2.0 months
期刊介绍: Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China. Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信