A new approach to solving a quasilinear boundary value problem with p-Laplacian using optimization

Pub Date : 2023-06-09 DOI:10.21136/AM.2023.0194-22
Michaela Bailová, Jiří Bouchala
{"title":"A new approach to solving a quasilinear boundary value problem with p-Laplacian using optimization","authors":"Michaela Bailová,&nbsp;Jiří Bouchala","doi":"10.21136/AM.2023.0194-22","DOIUrl":null,"url":null,"abstract":"<div><p>We present a novel approach to solving a specific type of quasilinear boundary value problem with <i>p</i>-Laplacian that can be considered an alternative to the classic approach based on the mountain pass theorem. We introduce a new way of proving the existence of nontrivial weak solutions. We show that the nontrivial solutions of the problem are related to critical points of a certain functional different from the energy functional, and some solutions correspond to its minimum. This idea is new even for <i>p</i> = 2. We present an algorithm based on the introduced theory and apply it to the given problem. The algorithm is illustrated by numerical experiments and compared with the classic approach.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2023.0194-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel approach to solving a specific type of quasilinear boundary value problem with p-Laplacian that can be considered an alternative to the classic approach based on the mountain pass theorem. We introduce a new way of proving the existence of nontrivial weak solutions. We show that the nontrivial solutions of the problem are related to critical points of a certain functional different from the energy functional, and some solutions correspond to its minimum. This idea is new even for p = 2. We present an algorithm based on the introduced theory and apply it to the given problem. The algorithm is illustrated by numerical experiments and compared with the classic approach.

分享
查看原文
用最优化方法求解一类拟线性边值问题
本文提出了一种用p-拉普拉斯算子求解一类拟线性边值问题的新方法,可以看作是基于山口定理的经典方法的一种替代方法。给出了证明非平凡弱解存在性的一种新方法。我们证明了问题的非平凡解与某一不同于能量泛函的泛函的临界点有关,并且一些解对应于它的极小值。即使对于p = 2,这个想法也是新的。在此基础上提出了一种算法,并将其应用于实际问题。通过数值实验对该算法进行了验证,并与经典方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信