{"title":"A new approach to solving a quasilinear boundary value problem with p-Laplacian using optimization","authors":"Michaela Bailová, Jiří Bouchala","doi":"10.21136/AM.2023.0194-22","DOIUrl":null,"url":null,"abstract":"<div><p>We present a novel approach to solving a specific type of quasilinear boundary value problem with <i>p</i>-Laplacian that can be considered an alternative to the classic approach based on the mountain pass theorem. We introduce a new way of proving the existence of nontrivial weak solutions. We show that the nontrivial solutions of the problem are related to critical points of a certain functional different from the energy functional, and some solutions correspond to its minimum. This idea is new even for <i>p</i> = 2. We present an algorithm based on the introduced theory and apply it to the given problem. The algorithm is illustrated by numerical experiments and compared with the classic approach.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2023.0194-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel approach to solving a specific type of quasilinear boundary value problem with p-Laplacian that can be considered an alternative to the classic approach based on the mountain pass theorem. We introduce a new way of proving the existence of nontrivial weak solutions. We show that the nontrivial solutions of the problem are related to critical points of a certain functional different from the energy functional, and some solutions correspond to its minimum. This idea is new even for p = 2. We present an algorithm based on the introduced theory and apply it to the given problem. The algorithm is illustrated by numerical experiments and compared with the classic approach.