D. Banerjee, Y. Fujisawa, T. M. Minamide, Y. Tanigawa
{"title":"A note on the partial sum of Apostol's Möbius function","authors":"D. Banerjee, Y. Fujisawa, T. M. Minamide, Y. Tanigawa","doi":"10.1007/s10474-023-01363-1","DOIUrl":null,"url":null,"abstract":"<div><p>T. M. Apostol introduced \na certain Möbius function <span>\\(\\mu_{k}(\\cdot)\\)</span> of order k, where <span>\\(k\\geq 2\\)</span> is a fixed integer. Let <i>k</i>=1,\nthen <span>\\(\\mu_{1}(\\cdot)\\)</span> coincides with the Möbius function <span>\\(\\mu(\\cdot)\\)</span>, in the usual sense.\nFor any fixed <span>\\(k\\geq 2\\)</span>, he proved the asymptotic formula <span>\\(\\sum_{n\\leq x}\\mu_{k}(n)=A_{k}x+O_{k}(x^{1/k}\\log x)\\)</span>\nas <span>\\(x\\to\\infty\\)</span>, where <span>\\(A_{k}\\)</span> is a positive constant. Later, under the Riemann Hypothesis, D. Suryanarayana showed the <i>O</i>-term is\n<span>\\(O_{k}\\bigl(x^{\\frac{4k}{4k^{2}+1}}\\exp\\bigl(D\\frac{\\log x}{\\log\\log x}\\bigr)\\!\\bigr)\\)</span>\nwith some positive constant <i>D</i>. In this paper, without using any unproved hypothesis we shall prove that\nthe <i>O</i>-term obtained by Apostol can be improved to <span>\\(O_{k}\\bigl(x^{1/k}\\exp\\bigl(-D_{k}\\frac{(\\log x)^{3/5}}{(\\log \\log x)^{1/5}}\\bigr)\\!\\bigr)\\)</span>\nwith some positive constant <span>\\(D_{k}\\)</span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-023-01363-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
T. M. Apostol introduced
a certain Möbius function \(\mu_{k}(\cdot)\) of order k, where \(k\geq 2\) is a fixed integer. Let k=1,
then \(\mu_{1}(\cdot)\) coincides with the Möbius function \(\mu(\cdot)\), in the usual sense.
For any fixed \(k\geq 2\), he proved the asymptotic formula \(\sum_{n\leq x}\mu_{k}(n)=A_{k}x+O_{k}(x^{1/k}\log x)\)
as \(x\to\infty\), where \(A_{k}\) is a positive constant. Later, under the Riemann Hypothesis, D. Suryanarayana showed the O-term is
\(O_{k}\bigl(x^{\frac{4k}{4k^{2}+1}}\exp\bigl(D\frac{\log x}{\log\log x}\bigr)\!\bigr)\)
with some positive constant D. In this paper, without using any unproved hypothesis we shall prove that
the O-term obtained by Apostol can be improved to \(O_{k}\bigl(x^{1/k}\exp\bigl(-D_{k}\frac{(\log x)^{3/5}}{(\log \log x)^{1/5}}\bigr)\!\bigr)\)
with some positive constant \(D_{k}\).