A duality theorem for Tate–Shafarevich groups of curves over algebraically closed fields

IF 0.4 4区 数学 Q4 MATHEMATICS
Timo Keller
{"title":"A duality theorem for Tate–Shafarevich groups of curves over algebraically closed fields","authors":"Timo Keller","doi":"10.1007/s12188-018-0196-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this note, we prove a duality theorem for the Tate–Shafarevich group of a finite discrete Galois module over the function field <i>K</i> of a curve over an algebraically closed field: there is a perfect duality of finite groups <img> for <i>F</i> a finite étale Galois module on <i>K</i> of order invertible in <i>K</i> and with <span>\\(F' = {{\\mathrm{Hom}}}(F,\\mathbf{Q}/\\mathbf {Z}(1))\\)</span>. Furthermore, we prove that <span>\\(\\mathrm {H}^1(K,G) = 0\\)</span> for <i>G</i> a simply connected, quasisplit semisimple group over <i>K</i> not of type <span>\\(E_8\\)</span>.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"88 2","pages":"289 - 295"},"PeriodicalIF":0.4000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-018-0196-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-018-0196-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, we prove a duality theorem for the Tate–Shafarevich group of a finite discrete Galois module over the function field K of a curve over an algebraically closed field: there is a perfect duality of finite groups for F a finite étale Galois module on K of order invertible in K and with \(F' = {{\mathrm{Hom}}}(F,\mathbf{Q}/\mathbf {Z}(1))\). Furthermore, we prove that \(\mathrm {H}^1(K,G) = 0\) for G a simply connected, quasisplit semisimple group over K not of type \(E_8\).

代数闭域上曲线群的对偶定理
本文证明了代数闭域上曲线函数域K上有限离散伽罗瓦模的Tate-Shafarevich群的对偶定理:在K上的阶可逆的K上的有限离散伽罗瓦模存在有限群的完全对偶性 \(F' = {{\mathrm{Hom}}}(F,\mathbf{Q}/\mathbf {Z}(1))\). 进一步证明 \(\mathrm {H}^1(K,G) = 0\) 对于K非型上的一个单连通拟分裂半单群 \(E_8\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信