Low-Frequency Sound Absorption of an Inhomogeneous Micro-Perforated Panel with J-Shaped Cavities of Different Depths

IF 1.7 4区 物理与天体物理
Faisal Rafique, Jiu Hui Wu, Chong Rui Liu, Fuyin Ma
{"title":"Low-Frequency Sound Absorption of an Inhomogeneous Micro-Perforated Panel with J-Shaped Cavities of Different Depths","authors":"Faisal Rafique,&nbsp;Jiu Hui Wu,&nbsp;Chong Rui Liu,&nbsp;Fuyin Ma","doi":"10.1007/s40857-021-00261-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a micro-perforated panel (MPP) composite structure consisting of an inhomogeneous MPP (IMPP) backed with J-shaped cavities of different depths for low-frequency sound absorption is proposed. The goal is to increase the low-frequency (≤ 500 Hz) sound absorption performance of the IMPP. Sound absorption in a frequency range of 300–480 Hz was achieved with parallel-arranged IMPPs backed by J-shaped cavities, with average absorption of greater than 90%. A parametric analysis was used to optimize the structure's geometric parameters for the specified frequency range. The results show that when the length and volume of the back cavity depths increase, the low-frequency sound absorption peaks shift to a lower frequency. Similarly, the sound absorption curves are enhanced and move towards lower frequencies as the thickness of the IMPP increases. The structure was studied using an electro-acoustic equivalent circuit model (ECM) and finite element method (FEM) simulation. Model prototypes were then made using stereolithography (SLA) and verified by a square-shaped impedance tube-based experimental study to determine the normal absorption coefficient. The results revealed that the three types of curves, namely theoretical, FEM simulation, and experimental, were in good agreement.</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":"50 2","pages":"203 - 214"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-021-00261-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, a micro-perforated panel (MPP) composite structure consisting of an inhomogeneous MPP (IMPP) backed with J-shaped cavities of different depths for low-frequency sound absorption is proposed. The goal is to increase the low-frequency (≤ 500 Hz) sound absorption performance of the IMPP. Sound absorption in a frequency range of 300–480 Hz was achieved with parallel-arranged IMPPs backed by J-shaped cavities, with average absorption of greater than 90%. A parametric analysis was used to optimize the structure's geometric parameters for the specified frequency range. The results show that when the length and volume of the back cavity depths increase, the low-frequency sound absorption peaks shift to a lower frequency. Similarly, the sound absorption curves are enhanced and move towards lower frequencies as the thickness of the IMPP increases. The structure was studied using an electro-acoustic equivalent circuit model (ECM) and finite element method (FEM) simulation. Model prototypes were then made using stereolithography (SLA) and verified by a square-shaped impedance tube-based experimental study to determine the normal absorption coefficient. The results revealed that the three types of curves, namely theoretical, FEM simulation, and experimental, were in good agreement.

不同深度j形空腔非均匀微孔板的低频吸声特性
本文提出了一种由非均匀微孔板(IMPP)和不同深度的j型空腔组成的微孔板(MPP)复合结构,用于低频吸声。目标是提高IMPP的低频(≤500 Hz)吸声性能。在300 ~ 480 Hz的频率范围内,采用j形空腔支撑的平行排列impp吸声效果良好,平均吸声率大于90%。在给定的频率范围内,采用参数分析方法对结构的几何参数进行优化。结果表明:随着后腔长度和体积深度的增加,低频吸声峰向低频偏移;同样,随着IMPP厚度的增加,吸声曲线增强并向低频移动。采用电声等效电路模型(ECM)和有限元法(FEM)对该结构进行了仿真研究。然后使用立体光刻(SLA)制作模型原型,并通过基于方形阻抗管的实验研究进行验证,以确定法向吸收系数。结果表明,理论曲线、有限元模拟曲线和实验曲线具有较好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acoustics Australia
Acoustics Australia ACOUSTICS-
自引率
5.90%
发文量
24
期刊介绍: Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信