Quasi-periodicity of \(\mathbb {Z}_{p^an_0}\)

Pub Date : 2023-09-06 DOI:10.1007/s10474-023-01361-3
W. Zhou
{"title":"Quasi-periodicity of \\(\\mathbb {Z}_{p^an_0}\\)","authors":"W. Zhou","doi":"10.1007/s10474-023-01361-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>p</i><sup><i>a</i></sup> be a prime power and <i>n</i><sub>0</sub> a square-free number. We prove that any complementing pair in a cyclic group of order <i>p</i><sup><i>a</i></sup><i>n</i><sub>0</sub> is quasi-periodic, with one component decomposable by the the subgroup of order <i>p</i>. The proof is by induction and reduction since the presence of the square-free factor <i>n</i><sub>0</sub> allows us to perform a Tijdeman decomposition. We also give an explicit example to show that <span>\\(\\mathbb{Z}_{72}\\)</span> is the smallest cyclic group that fails to have the strong Tijdeman property. </p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-023-01361-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let pa be a prime power and n0 a square-free number. We prove that any complementing pair in a cyclic group of order pan0 is quasi-periodic, with one component decomposable by the the subgroup of order p. The proof is by induction and reduction since the presence of the square-free factor n0 allows us to perform a Tijdeman decomposition. We also give an explicit example to show that \(\mathbb{Z}_{72}\) is the smallest cyclic group that fails to have the strong Tijdeman property.

分享
查看原文
的拟周期性 \(\mathbb {Z}_{p^an_0}\)
设pa为质数幂,n0为无平方数。我们证明了pan0阶循环群中的任何互补对是拟周期的,其中一个分量可被p阶的子群分解。由于无平方因子n0的存在允许我们进行Tijdeman分解,因此我们可以通过归纳法和约简法来证明。并给出了一个明确的例子来证明\(\mathbb{Z}_{72}\)是不具有强Tijdeman性质的最小环群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信