{"title":"Quasi-periodicity of \\(\\mathbb {Z}_{p^an_0}\\)","authors":"W. Zhou","doi":"10.1007/s10474-023-01361-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>p</i><sup><i>a</i></sup> be a prime power and <i>n</i><sub>0</sub> a square-free number. We prove that any complementing pair in a cyclic group of order <i>p</i><sup><i>a</i></sup><i>n</i><sub>0</sub> is quasi-periodic, with one component decomposable by the the subgroup of order <i>p</i>. The proof is by induction and reduction since the presence of the square-free factor <i>n</i><sub>0</sub> allows us to perform a Tijdeman decomposition. We also give an explicit example to show that <span>\\(\\mathbb{Z}_{72}\\)</span> is the smallest cyclic group that fails to have the strong Tijdeman property. </p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-023-01361-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let pa be a prime power and n0 a square-free number. We prove that any complementing pair in a cyclic group of order pan0 is quasi-periodic, with one component decomposable by the the subgroup of order p. The proof is by induction and reduction since the presence of the square-free factor n0 allows us to perform a Tijdeman decomposition. We also give an explicit example to show that \(\mathbb{Z}_{72}\) is the smallest cyclic group that fails to have the strong Tijdeman property.