Coanalytic ultrafilter bases

IF 0.3 4区 数学 Q1 Arts and Humanities
Jonathan Schilhan
{"title":"Coanalytic ultrafilter bases","authors":"Jonathan Schilhan","doi":"10.1007/s00153-021-00801-7","DOIUrl":null,"url":null,"abstract":"<div><p>We study the definability of ultrafilter bases on <span>\\(\\omega \\)</span> in the sense of descriptive set theory. As a main result we show that there is no coanalytic base for a Ramsey ultrafilter, while in <i>L</i> we can construct <span>\\(\\Pi ^1_1\\)</span> P-point and Q-point bases. We also show that the existence of a <span>\\({\\varvec{\\Delta }}^1_{n+1}\\)</span> ultrafilter is equivalent to that of a <span>\\({\\varvec{\\Pi }}^1_n\\)</span> ultrafilter base, for <span>\\(n \\in \\omega \\)</span>. Moreover we introduce a Borel version of the classical ultrafilter number and make some observations.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-021-00801-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 7

Abstract

We study the definability of ultrafilter bases on \(\omega \) in the sense of descriptive set theory. As a main result we show that there is no coanalytic base for a Ramsey ultrafilter, while in L we can construct \(\Pi ^1_1\) P-point and Q-point bases. We also show that the existence of a \({\varvec{\Delta }}^1_{n+1}\) ultrafilter is equivalent to that of a \({\varvec{\Pi }}^1_n\) ultrafilter base, for \(n \in \omega \). Moreover we introduce a Borel version of the classical ultrafilter number and make some observations.

共分析超滤碱
在描述集理论的意义上,基于\(\omega \)研究了超滤的可定义性。主要结果表明Ramsey超滤不存在共解析基,而在L中我们可以构造\(\Pi ^1_1\) p点和q点基。对于\(n \in \omega \),我们还证明了\({\varvec{\Delta }}^1_{n+1}\)超滤基的存在与\({\varvec{\Pi }}^1_n\)超滤基的存在是等价的。此外,我们还引入了经典超滤数的Borel版本,并做了一些观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信