Asymptotic analysis of expectations of plane partition statistics

IF 0.4 4区 数学 Q4 MATHEMATICS
Ljuben Mutafchiev
{"title":"Asymptotic analysis of expectations of plane partition statistics","authors":"Ljuben Mutafchiev","doi":"10.1007/s12188-018-0191-z","DOIUrl":null,"url":null,"abstract":"<div><p>Assuming that a plane partition of the positive integer <i>n</i> is chosen uniformly at random from the set of all such partitions, we propose a general asymptotic scheme for the computation of expectations of various plane partition statistics as <i>n</i> becomes large. The generating functions that arise in this study are of the form <i>Q</i>(<i>x</i>)<i>F</i>(<i>x</i>), where <span>\\(Q(x)=\\prod _{j=1}^\\infty (1-x^j)^{-j}\\)</span> is the generating function for the number of plane partitions. We show how asymptotics of such expectations can be obtained directly from the asymptotic expansion of the function <i>F</i>(<i>x</i>) around <span>\\(x=1\\)</span>. The representation of a plane partition as a solid diagram of volume <i>n</i> allows interpretations of these statistics in terms of its dimensions and shape. As an application of our main result, we obtain the asymptotic behavior of the expected values of the largest part, the number of columns, the number of rows (that is, the three dimensions of the solid diagram) and the trace (the number of cubes in the wall on the main diagonal of the solid diagram). Our results are similar to those of Grabner et al. (Comb Probab Comput 23:1057–1086, 2014) related to linear integer partition statistics. We base our study on the Hayman’s method for admissible power series.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"88 1","pages":"255 - 272"},"PeriodicalIF":0.4000,"publicationDate":"2018-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-018-0191-z","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-018-0191-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Assuming that a plane partition of the positive integer n is chosen uniformly at random from the set of all such partitions, we propose a general asymptotic scheme for the computation of expectations of various plane partition statistics as n becomes large. The generating functions that arise in this study are of the form Q(x)F(x), where \(Q(x)=\prod _{j=1}^\infty (1-x^j)^{-j}\) is the generating function for the number of plane partitions. We show how asymptotics of such expectations can be obtained directly from the asymptotic expansion of the function F(x) around \(x=1\). The representation of a plane partition as a solid diagram of volume n allows interpretations of these statistics in terms of its dimensions and shape. As an application of our main result, we obtain the asymptotic behavior of the expected values of the largest part, the number of columns, the number of rows (that is, the three dimensions of the solid diagram) and the trace (the number of cubes in the wall on the main diagonal of the solid diagram). Our results are similar to those of Grabner et al. (Comb Probab Comput 23:1057–1086, 2014) related to linear integer partition statistics. We base our study on the Hayman’s method for admissible power series.

平面划分统计量期望的渐近分析
假设从所有正整数n的平面分区集合中均匀随机地选择一个平面分区,我们提出了计算n变大时各种平面分区统计量期望的一般渐近格式。本研究中出现的生成函数形式为Q(x)F(x),其中\(Q(x)=\prod _{j=1}^\infty (1-x^j)^{-j}\)为平面分区数的生成函数。我们展示了如何从函数F(x)在\(x=1\)周围的渐近展开中直接获得这种期望的渐近。将平面分区表示为体积n的实体图,可以根据其尺寸和形状来解释这些统计数据。作为我们的主要结果的一个应用,我们得到了最大部分期望值、列数、行数(即实体图的三个维度)和迹(实体图主对角线上墙上的立方体数)的渐近行为。我们的结果与Grabner等人(Comb Probab compuput 23:10 . 57 - 1086, 2014)在线性整数分区统计方面的结果相似。我们的研究基于可容许幂级数的Hayman方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信