The local invariant for scale structures on mapping spaces

IF 0.4 4区 数学 Q4 MATHEMATICS
Jungsoo Kang
{"title":"The local invariant for scale structures on mapping spaces","authors":"Jungsoo Kang","doi":"10.1007/s12188-019-00211-w","DOIUrl":null,"url":null,"abstract":"<div><p>A scale Hilbert space is a natural generalization of a Hilbert space which considers not only a single Hilbert space but a nested sequence of subspaces. Scale structures were introduced by H. Hofer, K. Wysocki, and E. Zehnder as a new concept of smooth structures in infinite dimensions. In this paper, we prove that scale structures on mapping spaces are completely determined by the dimension of domain manifolds. We also give a complete description of the local invariant introduced by U. Frauenfelder for these spaces. Product mapping spaces and relative mapping spaces are also studied. Our approach is based on the spectral resolution of Laplace type operators together with the eigenvalue growth estimate.\n</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-019-00211-w","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-019-00211-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

A scale Hilbert space is a natural generalization of a Hilbert space which considers not only a single Hilbert space but a nested sequence of subspaces. Scale structures were introduced by H. Hofer, K. Wysocki, and E. Zehnder as a new concept of smooth structures in infinite dimensions. In this paper, we prove that scale structures on mapping spaces are completely determined by the dimension of domain manifolds. We also give a complete description of the local invariant introduced by U. Frauenfelder for these spaces. Product mapping spaces and relative mapping spaces are also studied. Our approach is based on the spectral resolution of Laplace type operators together with the eigenvalue growth estimate.

映射空间上尺度结构的局部不变量
尺度希尔伯特空间是希尔伯特空间的自然推广,它不仅考虑单个的希尔伯特空间,而且考虑嵌套的子空间序列。尺度结构是由H. Hofer、K. Wysocki和E. Zehnder提出的一个关于无限维光滑结构的新概念。本文证明了映射空间上的尺度结构完全由域流形的维数决定。我们也给出了U. Frauenfelder对这些空间引入的局部不变量的完整描述。还研究了乘积映射空间和相对映射空间。我们的方法是基于拉普拉斯算子的光谱分辨率和特征值增长估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信