{"title":"The local invariant for scale structures on mapping spaces","authors":"Jungsoo Kang","doi":"10.1007/s12188-019-00211-w","DOIUrl":null,"url":null,"abstract":"<div><p>A scale Hilbert space is a natural generalization of a Hilbert space which considers not only a single Hilbert space but a nested sequence of subspaces. Scale structures were introduced by H. Hofer, K. Wysocki, and E. Zehnder as a new concept of smooth structures in infinite dimensions. In this paper, we prove that scale structures on mapping spaces are completely determined by the dimension of domain manifolds. We also give a complete description of the local invariant introduced by U. Frauenfelder for these spaces. Product mapping spaces and relative mapping spaces are also studied. Our approach is based on the spectral resolution of Laplace type operators together with the eigenvalue growth estimate.\n</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"89 2","pages":"135 - 150"},"PeriodicalIF":0.4000,"publicationDate":"2019-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-019-00211-w","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-019-00211-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
A scale Hilbert space is a natural generalization of a Hilbert space which considers not only a single Hilbert space but a nested sequence of subspaces. Scale structures were introduced by H. Hofer, K. Wysocki, and E. Zehnder as a new concept of smooth structures in infinite dimensions. In this paper, we prove that scale structures on mapping spaces are completely determined by the dimension of domain manifolds. We also give a complete description of the local invariant introduced by U. Frauenfelder for these spaces. Product mapping spaces and relative mapping spaces are also studied. Our approach is based on the spectral resolution of Laplace type operators together with the eigenvalue growth estimate.
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.