Computational analysis for fractional characterization of coupled convection-diffusion equations arising in MHD flows

IF 4.5 2区 工程技术 Q1 MATHEMATICS, APPLIED
M. Hamid, M. Usman, Zhenfu Tian
{"title":"Computational analysis for fractional characterization of coupled convection-diffusion equations arising in MHD flows","authors":"M. Hamid,&nbsp;M. Usman,&nbsp;Zhenfu Tian","doi":"10.1007/s10483-023-2970-6","DOIUrl":null,"url":null,"abstract":"<div><p>The work is devoted to the fractional characterization of time-dependent coupled convection-diffusion systems arising in magnetohydrodynamics (MHD) flows. The time derivative is expressed by means of Caputo’s fractional derivative concept, while the model is solved via the full-spectral method (FSM) and the semi-spectral scheme (SSS). The FSM is based on the operational matrices of derivatives constructed by using higher-order orthogonal polynomials and collocation techniques. The SSS is developed by discretizing the time variable, and the space domain is collocated by using equal points. A detailed comparative analysis is made through graphs for various parameters and tables with existing literature. The contour graphs are made to show the behaviors of the velocity and magnetic fields. The proposed methods are reasonably efficient in examining the behavior of convection-diffusion equations arising in MHD flows, and the concept may be extended for variable order models arising in MHD flows.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 4","pages":"669 - 692"},"PeriodicalIF":4.5000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-2970-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

The work is devoted to the fractional characterization of time-dependent coupled convection-diffusion systems arising in magnetohydrodynamics (MHD) flows. The time derivative is expressed by means of Caputo’s fractional derivative concept, while the model is solved via the full-spectral method (FSM) and the semi-spectral scheme (SSS). The FSM is based on the operational matrices of derivatives constructed by using higher-order orthogonal polynomials and collocation techniques. The SSS is developed by discretizing the time variable, and the space domain is collocated by using equal points. A detailed comparative analysis is made through graphs for various parameters and tables with existing literature. The contour graphs are made to show the behaviors of the velocity and magnetic fields. The proposed methods are reasonably efficient in examining the behavior of convection-diffusion equations arising in MHD flows, and the concept may be extended for variable order models arising in MHD flows.

MHD流动中对流-扩散耦合方程分数阶特征的计算分析
这项工作致力于在磁流体动力学(MHD)流动中产生的时变耦合对流扩散系统的分数表征。时间导数采用Caputo分数阶导数概念表示,模型采用全谱法(FSM)和半谱法(SSS)求解。FSM是基于高阶正交多项式和配置技术构造的导数运算矩阵。该方法采用离散化时间变量的方法,利用等点对空间域进行配位。通过各种参数的曲线图和表格与已有文献进行了详细的对比分析。用等高线图表示速度和磁场的变化规律。所提出的方法在研究MHD流动中对流扩散方程的行为方面是相当有效的,并且该概念可以推广到MHD流动中的变阶模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
9.10%
发文量
106
审稿时长
2.0 months
期刊介绍: Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China. Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信