{"title":"Computational analysis for fractional characterization of coupled convection-diffusion equations arising in MHD flows","authors":"M. Hamid, M. Usman, Zhenfu Tian","doi":"10.1007/s10483-023-2970-6","DOIUrl":null,"url":null,"abstract":"<div><p>The work is devoted to the fractional characterization of time-dependent coupled convection-diffusion systems arising in magnetohydrodynamics (MHD) flows. The time derivative is expressed by means of Caputo’s fractional derivative concept, while the model is solved via the full-spectral method (FSM) and the semi-spectral scheme (SSS). The FSM is based on the operational matrices of derivatives constructed by using higher-order orthogonal polynomials and collocation techniques. The SSS is developed by discretizing the time variable, and the space domain is collocated by using equal points. A detailed comparative analysis is made through graphs for various parameters and tables with existing literature. The contour graphs are made to show the behaviors of the velocity and magnetic fields. The proposed methods are reasonably efficient in examining the behavior of convection-diffusion equations arising in MHD flows, and the concept may be extended for variable order models arising in MHD flows.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 4","pages":"669 - 692"},"PeriodicalIF":4.5000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-2970-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
The work is devoted to the fractional characterization of time-dependent coupled convection-diffusion systems arising in magnetohydrodynamics (MHD) flows. The time derivative is expressed by means of Caputo’s fractional derivative concept, while the model is solved via the full-spectral method (FSM) and the semi-spectral scheme (SSS). The FSM is based on the operational matrices of derivatives constructed by using higher-order orthogonal polynomials and collocation techniques. The SSS is developed by discretizing the time variable, and the space domain is collocated by using equal points. A detailed comparative analysis is made through graphs for various parameters and tables with existing literature. The contour graphs are made to show the behaviors of the velocity and magnetic fields. The proposed methods are reasonably efficient in examining the behavior of convection-diffusion equations arising in MHD flows, and the concept may be extended for variable order models arising in MHD flows.
期刊介绍:
Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China.
Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.