{"title":"Effect of periodic heat transfer on the transient thermal behavior of a convective-radiative fully wet porous moving trapezoidal fin","authors":"B. J. Gireesha, M. L. Keerthi","doi":"10.1007/s10483-023-2974-6","DOIUrl":null,"url":null,"abstract":"<div><p>A moving trapezoidal profiled convective-radiative porous longitudinal fin wetted in a single-phase fluid is considered in the current article. The periodic variation in the fin base temperature is taken into account along with the temperature sensitive thermal conductivity and convective heat transfer coefficients. The modeled problem, which is resolved into a non-linear partial differential equation (PDE), is made dimensionless and solved by employing the finite difference method (FDM). The results are displayed through graphs and discussed. The effects of amplitude, frequency of oscillation, wet nature, Peclet number, and other relevant quantities on the distribution of temperature through the fin length and with the dimensionless time are investigated. It is deciphered that the periodic heat transfer gives rise to the wavy nature of the fin thermal profile against time. The analysis is beneficial in the design of fin structures for applications like solar collectors, space/airborne applications, and refrigeration industries.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 4","pages":"653 - 668"},"PeriodicalIF":4.5000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-2974-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A moving trapezoidal profiled convective-radiative porous longitudinal fin wetted in a single-phase fluid is considered in the current article. The periodic variation in the fin base temperature is taken into account along with the temperature sensitive thermal conductivity and convective heat transfer coefficients. The modeled problem, which is resolved into a non-linear partial differential equation (PDE), is made dimensionless and solved by employing the finite difference method (FDM). The results are displayed through graphs and discussed. The effects of amplitude, frequency of oscillation, wet nature, Peclet number, and other relevant quantities on the distribution of temperature through the fin length and with the dimensionless time are investigated. It is deciphered that the periodic heat transfer gives rise to the wavy nature of the fin thermal profile against time. The analysis is beneficial in the design of fin structures for applications like solar collectors, space/airborne applications, and refrigeration industries.
期刊介绍:
Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China.
Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.