A motivic study of generalized Burniat surfaces

IF 0.4 4区 数学 Q4 MATHEMATICS
Chris Peters
{"title":"A motivic study of generalized Burniat surfaces","authors":"Chris Peters","doi":"10.1007/s12188-018-0198-5","DOIUrl":null,"url":null,"abstract":"<div><p>Generalized Burniat surfaces are surfaces of general type with <span>\\(p_g=q\\)</span> and Euler number <span>\\(e=6\\)</span> obtained by a variant of Inoue’s construction method for the classical Burniat surfaces. I prove a variant of the Bloch conjecture for these surfaces. The method applies also to the so-called Sicilian surfaces introduced by Bauer et al. in (J Math Sci Univ Tokyo 22(2–15):55–111, 2015. arXiv:1409.1285v2). This implies that the Chow motives of all of these surfaces are finite-dimensional in the sense of Kimura.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"88 2","pages":"377 - 387"},"PeriodicalIF":0.4000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-018-0198-5","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-018-0198-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Generalized Burniat surfaces are surfaces of general type with \(p_g=q\) and Euler number \(e=6\) obtained by a variant of Inoue’s construction method for the classical Burniat surfaces. I prove a variant of the Bloch conjecture for these surfaces. The method applies also to the so-called Sicilian surfaces introduced by Bauer et al. in (J Math Sci Univ Tokyo 22(2–15):55–111, 2015. arXiv:1409.1285v2). This implies that the Chow motives of all of these surfaces are finite-dimensional in the sense of Kimura.

广义燃烧曲面的动力学研究
广义Burniat曲面是由Inoue构造经典Burniat曲面的一种变体得到的具有\(p_g=q\)和\(e=6\)欧拉数的一般曲面。我为这些曲面证明了布洛赫猜想的一个变体。该方法也适用于Bauer等人在《东京数学科学大学学报》22(2-15):55-111,2015中引入的所谓西西里曲面。arXiv:1409.1285v2)。这意味着所有这些表面的周氏动机在木村看来都是有限维的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信