{"title":"Masked Face Recognition Dataset and Application","authors":"Zhongyuan Wang;Baojin Huang;Guangcheng Wang;Peng Yi;Kui Jiang","doi":"10.1109/TBIOM.2023.3242085","DOIUrl":null,"url":null,"abstract":"During COVID-19 coronavirus epidemic, almost everyone wears a mask to prevent the spread of virus. It raises a problem that the traditional face recognition model basically fails in the scene of face-based identity verification, such as security check, community visit check-in, etc. Therefore, it is imminent to boost the performance of masked face recognition. Most recent advanced face recognition methods are based on deep learning, which heavily depends on a large number of training samples. However, there are presently no publicly available masked face recognition datasets, especially real ones. To this end, this work proposes three types of masked face datasets, including Masked Face Detection Dataset (MFDD), Real-world Masked Face Recognition Dataset (RMFRD) and Synthetic Masked Face Recognition Dataset (SMFRD). Besides, we conduct benchmark experiments on these three datasets for reference. As far as we know, we are the first to publicly release large-scale masked face recognition datasets that can be downloaded for free at \n<uri>https://github.com/X-zhangyang/Real-World-Masked-Face-Dataset</uri>\n.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"5 2","pages":"298-304"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10036007/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
During COVID-19 coronavirus epidemic, almost everyone wears a mask to prevent the spread of virus. It raises a problem that the traditional face recognition model basically fails in the scene of face-based identity verification, such as security check, community visit check-in, etc. Therefore, it is imminent to boost the performance of masked face recognition. Most recent advanced face recognition methods are based on deep learning, which heavily depends on a large number of training samples. However, there are presently no publicly available masked face recognition datasets, especially real ones. To this end, this work proposes three types of masked face datasets, including Masked Face Detection Dataset (MFDD), Real-world Masked Face Recognition Dataset (RMFRD) and Synthetic Masked Face Recognition Dataset (SMFRD). Besides, we conduct benchmark experiments on these three datasets for reference. As far as we know, we are the first to publicly release large-scale masked face recognition datasets that can be downloaded for free at
https://github.com/X-zhangyang/Real-World-Masked-Face-Dataset
.