Spectrum Usage Anomaly Detection from Sub-Sampled Data Stream via Deep Neural Network

Han Zhang;Jian Yang;Junting Chen;Yue Gao
{"title":"Spectrum Usage Anomaly Detection from Sub-Sampled Data Stream via Deep Neural Network","authors":"Han Zhang;Jian Yang;Junting Chen;Yue Gao","doi":"10.23919/JCIN.2023.10087244","DOIUrl":null,"url":null,"abstract":"Anomaly detection is an essential part of any practical system in order to remedy any malfunction and accident early to create a secure and robust system. Malicious users and malfunctioning cognitive radio (CR) devices may cause severe interference to legitimate users. However, there are no effective methods to detect spontaneous and irregular anomaly behaviors in sub-sampling data stream from wideband compressive spectrum sensing as an important function of a CR device. In this article, to detect anomaly utilization of spectrum from sub-sampled data stream, a multiple layer perceptron/feed-forward neural network (FFNN) based solution is proposed. The proposed solution would learn the pattern of legitimate and anomalous usages autonomously without expert's knowledge. The proposed neural network (NN) framework has also shown benefits such as more than 80% faster detection speed and lower detection error rate.","PeriodicalId":100766,"journal":{"name":"Journal of Communications and Information Networks","volume":"8 1","pages":"13-23"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10087244/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Anomaly detection is an essential part of any practical system in order to remedy any malfunction and accident early to create a secure and robust system. Malicious users and malfunctioning cognitive radio (CR) devices may cause severe interference to legitimate users. However, there are no effective methods to detect spontaneous and irregular anomaly behaviors in sub-sampling data stream from wideband compressive spectrum sensing as an important function of a CR device. In this article, to detect anomaly utilization of spectrum from sub-sampled data stream, a multiple layer perceptron/feed-forward neural network (FFNN) based solution is proposed. The proposed solution would learn the pattern of legitimate and anomalous usages autonomously without expert's knowledge. The proposed neural network (NN) framework has also shown benefits such as more than 80% faster detection speed and lower detection error rate.
基于深度神经网络的子采样数据流频谱使用异常检测
异常检测是任何实际系统的重要组成部分,以便及早纠正任何故障和事故,从而创建一个安全可靠的系统。恶意用户和故障的认知无线电(CR)设备可能会对合法用户造成严重干扰。然而,作为宽带压缩频谱感知的重要功能,目前还没有有效的方法来检测子采样数据流中的自发和不规则异常行为。本文提出了一种基于感知机/前馈神经网络(FFNN)的多层感知机/前馈神经网络(FFNN)的频谱异常利用检测方法。建议的解决方案将在没有专家知识的情况下自主学习合法和异常用法的模式。所提出的神经网络(NN)框架也显示出诸如检测速度提高80%以上和检测错误率降低等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信