P. Cantillon-Murphy;T.C. Neugebauer;C. Brasca;D.J. Perreault
{"title":"An active ripple filtering technique for improving common-mode inductor performance","authors":"P. Cantillon-Murphy;T.C. Neugebauer;C. Brasca;D.J. Perreault","doi":"10.1109/LPEL.2004.831155","DOIUrl":null,"url":null,"abstract":"Active ripple filtering is the replacement of large passive components in power filter circuits with smaller passive components and active control circuitry. This letter focuses on common-mode filters, where a large common-mode inductor (choke) is replaced by two smaller chokes and active op-amp control. The technique is appropriate when improved attenuation is required at relatively low frequencies and the high-frequency filtering requirements are easily met. Smaller chokes save significantly in material and winding costs. The technique is more advantageous if wire-wound chokes can be replaced by planar printed circuit board chokes. The use of the technique in an automotive electromagnetic interference (EMI) filter application is explored in detail.","PeriodicalId":100635,"journal":{"name":"IEEE Power Electronics Letters","volume":"2 2","pages":"45-50"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LPEL.2004.831155","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Power Electronics Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/1324654/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
Active ripple filtering is the replacement of large passive components in power filter circuits with smaller passive components and active control circuitry. This letter focuses on common-mode filters, where a large common-mode inductor (choke) is replaced by two smaller chokes and active op-amp control. The technique is appropriate when improved attenuation is required at relatively low frequencies and the high-frequency filtering requirements are easily met. Smaller chokes save significantly in material and winding costs. The technique is more advantageous if wire-wound chokes can be replaced by planar printed circuit board chokes. The use of the technique in an automotive electromagnetic interference (EMI) filter application is explored in detail.