Short Character Sums and the Pólya–Vinogradov Inequality

IF 0.6 4区 数学 Q3 MATHEMATICS
Alexander P Mangerel
{"title":"Short Character Sums and the Pólya–Vinogradov Inequality","authors":"Alexander P Mangerel","doi":"10.1093/qmath/haaa031","DOIUrl":null,"url":null,"abstract":"We show in a quantitative way that any odd primitive character χ modulo q of fixed order g ≥ 2 satisfies the property that if the Pólya–Vinogradov inequality for χ can be improved to \n<tex>$$\\begin{equation*} \\max_{1 \\leq t \\leq q} \\left|\\sum_{n \\leq t} \\chi(n)\\right| = o_{q \\rightarrow \\infty}(\\sqrt{q}\\log q) \\end{equation*}$$</tex>\n then for any ɛ > 0 one may exhibit cancellation in partial sums of χ on the interval [1, t] whenever \n<tex>$t \\gt q^{\\varepsilon}$</tex>\n, i.e., \n<tex>$$\\begin{equation*} \\sum_{n \\leq t} \\chi(n) = o_{q \\rightarrow \\infty}(t)\\ \\text{for all } t \\gt q^{\\varepsilon}. \\end{equation*}$$</tex>\n We also prove a converse implication, to the effect that if all odd primitive characters of fixed order dividing g exhibit cancellation in short sums then the Pólya–Vinogradov inequality can be improved for all odd primitive characters of order g. Some applications are also discussed.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"71 1","pages":"1281-1308"},"PeriodicalIF":0.6000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9434349/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

We show in a quantitative way that any odd primitive character χ modulo q of fixed order g ≥ 2 satisfies the property that if the Pólya–Vinogradov inequality for χ can be improved to $$\begin{equation*} \max_{1 \leq t \leq q} \left|\sum_{n \leq t} \chi(n)\right| = o_{q \rightarrow \infty}(\sqrt{q}\log q) \end{equation*}$$ then for any ɛ > 0 one may exhibit cancellation in partial sums of χ on the interval [1, t] whenever $t \gt q^{\varepsilon}$ , i.e., $$\begin{equation*} \sum_{n \leq t} \chi(n) = o_{q \rightarrow \infty}(t)\ \text{for all } t \gt q^{\varepsilon}. \end{equation*}$$ We also prove a converse implication, to the effect that if all odd primitive characters of fixed order dividing g exhibit cancellation in short sums then the Pólya–Vinogradov inequality can be improved for all odd primitive characters of order g. Some applications are also discussed.
短字符和和Pólya-Vinogradov不等式
我们用定量的方法证明了任意定阶g≥2的奇基字符χ模q满足这样的性质:如果χ的Pólya-Vinogradov不等式可以改进为$$\begin{equation*} \max_{1 \leq t \leq q} \left|\sum_{n \leq t} \chi(n)\right| = o_{q \rightarrow \infty}(\sqrt{q}\log q) \end{equation*}$$,那么对于任意的_ > 0,在区间[1,t]上,当$t \gt q^{\varepsilon}$,即$$\begin{equation*} \sum_{n \leq t} \chi(n) = o_{q \rightarrow \infty}(t)\ \text{for all } t \gt q^{\varepsilon}. \end{equation*}$$时,在χ的部分和上可以表现为消去。结果表明,如果除g的所有定阶奇基字符都在短和中相互抵消,则对所有g阶奇基字符的Pólya-Vinogradov不等式可以得到改进,并讨论了一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信