Surjective Homomorphisms from Algebras of Operators on Long Sequence Spaces are Automatically Injective

IF 0.6 4区 数学 Q3 MATHEMATICS
Bence HorvÁth;Tomasz Kania
{"title":"Surjective Homomorphisms from Algebras of Operators on Long Sequence Spaces are Automatically Injective","authors":"Bence HorvÁth;Tomasz Kania","doi":"10.1093/qmath/haaa066","DOIUrl":null,"url":null,"abstract":"We study automatic injectivity of surjective algebra homomorphisms from \n<tex>$\\mathscr{B}(X)$</tex>\n, the algebra of (bounded, linear) operators on X, to \n<tex>$\\mathscr{B}(Y)$</tex>\n, where X is one of the following long sequence spaces: c\n<inf>0</inf>\n(λ), \n<tex>$\\ell_{\\infty}^c(\\lambda)$</tex>\n, and \n<tex>$\\ell_p(\\lambda)$</tex>\n (\n<tex>$1 \\leqslant p \\lt \\infty$</tex>\n) and Y is arbitrary. En route to the proof that these spaces do indeed enjoy such a property, we classify two-sided ideals of the algebra of operators of any of the aforementioned Banach spaces that are closed with respect to the ‘sequential strong operator topology’.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qmath/haaa066","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9690902/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We study automatic injectivity of surjective algebra homomorphisms from $\mathscr{B}(X)$ , the algebra of (bounded, linear) operators on X, to $\mathscr{B}(Y)$ , where X is one of the following long sequence spaces: c 0 (λ), $\ell_{\infty}^c(\lambda)$ , and $\ell_p(\lambda)$ ( $1 \leqslant p \lt \infty$ ) and Y is arbitrary. En route to the proof that these spaces do indeed enjoy such a property, we classify two-sided ideals of the algebra of operators of any of the aforementioned Banach spaces that are closed with respect to the ‘sequential strong operator topology’.
长序列空间上算子代数的满射同态是自动内射的
我们研究了满射代数同态的自动注入性,从$\mathscr{B}(X)$,(有界的,线性的)算子在X上的代数,到$\mathscr{B}(Y)$,其中X是下列长序列空间之一:c0(λ), $\ell_{\infty}^c(\lambda)$和$\ell_p(\lambda)$ ($1 \leqslant p \lt \infty$), Y是任意的。在证明这些空间确实具有这样的性质的过程中,我们对任何上述的Banach空间的算子代数的双面理想进行了分类,这些空间相对于“顺序强算子拓扑”是封闭的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信