Caviar-Sunflower Optimization Algorithm-Based Deep Learning Classifier for Multi-Document Summarization

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Sheela J;Janet B
{"title":"Caviar-Sunflower Optimization Algorithm-Based Deep Learning Classifier for Multi-Document Summarization","authors":"Sheela J;Janet B","doi":"10.1093/comjnl/bxab193","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-document summarization model using an optimization algorithm named CAVIAR Sun Flower Optimization (CAV-SFO). In this method, two classifiers, namely: Generative Adversarial Network (GAN) classifier and Deep Recurrent Neural Network (Deep RNN), are utilized to generate a score for summarizing multi-documents. Initially, the simHash method is applied for removing the duplicate/real duplicate contents from sentences. Then, the result is given to the proposed CAV-SFO based GAN classifier to determine the score for individual sentences. The CAV-SFO is newly designed by incorporating CAVIAR with Sun Flower Optimization Algorithm (SFO). On the other hand, the pre-processing step is done for duplicate-removed sentences from input multi-document based on stop word removal and stemming. Afterward, text-based features are extracted from pre-processed documents, and then CAV-SFO based Deep RNN is introduced for generating a score; thereby, the internal model parameters are optimally tuned. Finally, the score generated by CAV-SFO based GAN and CAV-SFO based Deep RNN is hybridized, and the final score is obtained using a multi-document compression ratio. The proposed TaylorALO-based GAN showed improved results with maximal precision of 0.989, maximal recall of 0.986, maximal F-Measure of 0.823, maximal Rouge-Precision of 0.930, and maximal Rouge-recall of 0.870.","PeriodicalId":50641,"journal":{"name":"Computer Journal","volume":"66 3","pages":"727-742"},"PeriodicalIF":1.5000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10084430/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a multi-document summarization model using an optimization algorithm named CAVIAR Sun Flower Optimization (CAV-SFO). In this method, two classifiers, namely: Generative Adversarial Network (GAN) classifier and Deep Recurrent Neural Network (Deep RNN), are utilized to generate a score for summarizing multi-documents. Initially, the simHash method is applied for removing the duplicate/real duplicate contents from sentences. Then, the result is given to the proposed CAV-SFO based GAN classifier to determine the score for individual sentences. The CAV-SFO is newly designed by incorporating CAVIAR with Sun Flower Optimization Algorithm (SFO). On the other hand, the pre-processing step is done for duplicate-removed sentences from input multi-document based on stop word removal and stemming. Afterward, text-based features are extracted from pre-processed documents, and then CAV-SFO based Deep RNN is introduced for generating a score; thereby, the internal model parameters are optimally tuned. Finally, the score generated by CAV-SFO based GAN and CAV-SFO based Deep RNN is hybridized, and the final score is obtained using a multi-document compression ratio. The proposed TaylorALO-based GAN showed improved results with maximal precision of 0.989, maximal recall of 0.986, maximal F-Measure of 0.823, maximal Rouge-Precision of 0.930, and maximal Rouge-recall of 0.870.
基于鱼子酱-向日葵优化算法的多文档摘要深度学习分类器
本文提出了一种基于CAVIAR太阳花优化算法的多文档摘要模型。在该方法中,使用两个分类器,即生成对抗性网络(GAN)分类器和深度递归神经网络(Deep RNN),来生成用于汇总多文档的分数。最初,simHash方法用于去除句子中的重复/真实重复内容。然后,将结果提供给所提出的基于CAV-SFO的GAN分类器,以确定单个句子的分数。CAV-SFO是将CAVIAR与太阳花优化算法(SFO)相结合而新设计的。另一方面,基于停止词去除和词干处理,对输入的多文档中重复去除的句子进行预处理。然后,从预处理的文档中提取基于文本的特征,然后引入基于CAV-SFO的Deep RNN来生成分数;从而优化了内部模型参数。最后,将基于CAV-SFO的GAN和基于CAV-SVO的Deep RNN生成的分数进行混合,并使用多文档压缩比获得最终分数。所提出的基于TaylorALO的GAN显示出改进的结果,最大精度为0.989,最大召回率为0.986,最大F-Measure为0.823,最大Rouge精度为0.930,最大Rough召回率为0.870。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Journal
Computer Journal 工程技术-计算机:软件工程
CiteScore
3.60
自引率
7.10%
发文量
164
审稿时长
4.8 months
期刊介绍: The Computer Journal is one of the longest-established journals serving all branches of the academic computer science community. It is currently published in four sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信