{"title":"On the Connection Between Step Approximations and Depth-Averaged Models for Wave Scattering by Variable Bathymetry","authors":"R Porter","doi":"10.1093/qjmam/hbaa002","DOIUrl":null,"url":null,"abstract":"Two popular and computationally inexpensive class of methods for approximating the propagation of surface waves over two-dimensional variable bathymetry are ‘step approximations’ and ‘depth-averaged models’. In the former, the bathymetry is discretised into short sections of constant depth connected by vertical steps. Scattering across the bathymetry is calculated from the product of \n<tex>$2 \\times 2$</tex>\n transfer matrices whose entries encode scattering properties at each vertical step taken in isolation from all others. In the latter, a separable depth dependence is assumed in the underlying velocity field and a vertical averaging process is implemented leading to a second-order ordinary differential equation (ODE). In this article, the step approximation is revisited and shown to be equivalent to an ODE describing a depth-averaged model in the limit of zero-step length. The ODE depends on how the solution to the canonical vertical step problem is approximated. If a shallow water approximation is used, then the well-known linear shallow water equation results. If a plane-wave variational approximation is used, then a new variant of the mild-slope equations is recovered.","PeriodicalId":92460,"journal":{"name":"The quarterly journal of mechanics and applied mathematics","volume":"73 1","pages":"84-100"},"PeriodicalIF":0.8000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qjmam/hbaa002","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of mechanics and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9108409/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Two popular and computationally inexpensive class of methods for approximating the propagation of surface waves over two-dimensional variable bathymetry are ‘step approximations’ and ‘depth-averaged models’. In the former, the bathymetry is discretised into short sections of constant depth connected by vertical steps. Scattering across the bathymetry is calculated from the product of
$2 \times 2$
transfer matrices whose entries encode scattering properties at each vertical step taken in isolation from all others. In the latter, a separable depth dependence is assumed in the underlying velocity field and a vertical averaging process is implemented leading to a second-order ordinary differential equation (ODE). In this article, the step approximation is revisited and shown to be equivalent to an ODE describing a depth-averaged model in the limit of zero-step length. The ODE depends on how the solution to the canonical vertical step problem is approximated. If a shallow water approximation is used, then the well-known linear shallow water equation results. If a plane-wave variational approximation is used, then a new variant of the mild-slope equations is recovered.