{"title":"Epidemic thresholds of infectious diseases on tie-decay networks","authors":"Qinyi Chen;Mason A Porter;Naoki Masuda","doi":"10.1093/comnet/cnab031","DOIUrl":null,"url":null,"abstract":"In the study of infectious diseases on networks, researchers calculate epidemic thresholds to help forecast whether or not a disease will eventually infect a large fraction of a population. Because network structure typically changes with time, which fundamentally influences the dynamics of spreading processes and in turn affects epidemic thresholds for disease propagation, it is important to examine epidemic thresholds in models of disease spread on temporal networks. Most existing studies of epidemic thresholds in temporal networks have focused on models in discrete time, but most real-world networked systems evolve continuously with time. In our work, we encode the continuous time-dependence of networks in the evaluation of the epidemic threshold of a susceptible–infected–susceptible (SIS) process by studying an SIS model on tie-decay networks. We derive the epidemic-threshold condition of this model, and we perform numerical experiments to verify it. We also examine how different factors—the decay coefficients of the tie strengths in a network, the frequency of the interactions between the nodes in the network, and the sparsity of the underlying social network on which interactions occur—lead to decreases or increases of the critical values of the threshold and hence contribute to facilitating or impeding the spread of a disease. We thereby demonstrate how the features of tie-decay networks alter the outcome of disease spread.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":"10 1","pages":"1-24"},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9717031/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 5
Abstract
In the study of infectious diseases on networks, researchers calculate epidemic thresholds to help forecast whether or not a disease will eventually infect a large fraction of a population. Because network structure typically changes with time, which fundamentally influences the dynamics of spreading processes and in turn affects epidemic thresholds for disease propagation, it is important to examine epidemic thresholds in models of disease spread on temporal networks. Most existing studies of epidemic thresholds in temporal networks have focused on models in discrete time, but most real-world networked systems evolve continuously with time. In our work, we encode the continuous time-dependence of networks in the evaluation of the epidemic threshold of a susceptible–infected–susceptible (SIS) process by studying an SIS model on tie-decay networks. We derive the epidemic-threshold condition of this model, and we perform numerical experiments to verify it. We also examine how different factors—the decay coefficients of the tie strengths in a network, the frequency of the interactions between the nodes in the network, and the sparsity of the underlying social network on which interactions occur—lead to decreases or increases of the critical values of the threshold and hence contribute to facilitating or impeding the spread of a disease. We thereby demonstrate how the features of tie-decay networks alter the outcome of disease spread.
期刊介绍:
Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network