Detection of oceanic Rossby waves in the extratropics by complex networks

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Meng Gao;Aidi Zhang;Han Zhang;Yueqi Wang
{"title":"Detection of oceanic Rossby waves in the extratropics by complex networks","authors":"Meng Gao;Aidi Zhang;Han Zhang;Yueqi Wang","doi":"10.1093/comnet/cnad003","DOIUrl":null,"url":null,"abstract":"Complex network is a versatile tool for exploring the internal structures and dynamical properties of complex system. The Earth's climate is a typical complex system, and the climate variability is mainly controlled by Sun–Earth interactions on planetary scales. The Earth's rotation could induce Rossby waves, and the oceanic Rossby waves significantly affect the Earth's climate in turn. In this study, climate network, a kind of complex network for climate sciences, has been applied to detect Rossby waves in extratropics of global oceans. The nodes of the climate networks are the regular grid points zonally distributed in four regions of global oceans (North Pacific, South Pacific, North Atlantic and South Atlantic-Indian), and the links represent the statistically significant cross-correlations of sea level anomalies. The results show that the westward propagation of oceanic Rossby waves in the extratropics could be detected by the climate network. Also, the climate network has the potential to detect the more oceanic dynamics.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/10068402/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Complex network is a versatile tool for exploring the internal structures and dynamical properties of complex system. The Earth's climate is a typical complex system, and the climate variability is mainly controlled by Sun–Earth interactions on planetary scales. The Earth's rotation could induce Rossby waves, and the oceanic Rossby waves significantly affect the Earth's climate in turn. In this study, climate network, a kind of complex network for climate sciences, has been applied to detect Rossby waves in extratropics of global oceans. The nodes of the climate networks are the regular grid points zonally distributed in four regions of global oceans (North Pacific, South Pacific, North Atlantic and South Atlantic-Indian), and the links represent the statistically significant cross-correlations of sea level anomalies. The results show that the westward propagation of oceanic Rossby waves in the extratropics could be detected by the climate network. Also, the climate network has the potential to detect the more oceanic dynamics.
用复杂网络探测温带海洋罗斯比波
复杂网络是研究复杂系统内部结构和动态特性的通用工具。地球气候是一个典型的复杂系统,在行星尺度上,气候变化主要受日地相互作用的控制。地球自转会诱发罗斯比波,而海洋罗斯比波反过来又会显著影响地球的气候。本研究将气候网络作为一种复杂的气候科学网络,应用于全球海洋温带地区的罗斯比波探测。气候网络的节点是全球海洋(北太平洋、南太平洋、北大西洋和南大西洋-印度洋)四个区域的规则网格点,这些节点代表了海平面异常在统计上显著的相互关联。结果表明,气候网可以探测到外热带地区海洋罗斯比波的西向传播。此外,气候网络有可能探测到更多的海洋动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信