Asymptotic modelling of the JKR adhesion contact for a thin elastic layer

IF 0.8
I. I. Argatov;G. S. Mishuris;V. L. Popov
{"title":"Asymptotic modelling of the JKR adhesion contact for a thin elastic layer","authors":"I. I. Argatov;G. S. Mishuris;V. L. Popov","doi":"10.1093/qjmam/hbw002","DOIUrl":null,"url":null,"abstract":"The Johnson–Kendall–Roberts model of frictionless adhesive contact is extended to the case of a thin transversely isotropic elastic layer bonded to a rigid base. The leading-order asymptotic models are obtained for both compressible and incompressible elastic layers. The boundary conditions for the contact pressure approximation on the contour of the contact area have been derived from the boundary-layer solutions, which satisfy the condition that the stress intensity factor of the contact pressure density should have the same value all around the contact area boundary. In the incompressible case, a perturbation solution is obtained for a slightly perturbed circular contact area.","PeriodicalId":92460,"journal":{"name":"The quarterly journal of mechanics and applied mathematics","volume":"69 2","pages":"161-179"},"PeriodicalIF":0.8000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qjmam/hbw002","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of mechanics and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8152693/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The Johnson–Kendall–Roberts model of frictionless adhesive contact is extended to the case of a thin transversely isotropic elastic layer bonded to a rigid base. The leading-order asymptotic models are obtained for both compressible and incompressible elastic layers. The boundary conditions for the contact pressure approximation on the contour of the contact area have been derived from the boundary-layer solutions, which satisfy the condition that the stress intensity factor of the contact pressure density should have the same value all around the contact area boundary. In the incompressible case, a perturbation solution is obtained for a slightly perturbed circular contact area.
薄弹性层JKR粘着接触的渐近建模
Johnson–Kendall–Roberts无摩擦粘性接触模型扩展到薄横向各向同性弹性层与刚性基底结合的情况。得到了可压缩和不可压缩弹性层的前导阶渐近模型。从边界层解导出了接触区轮廓上的接触压力近似的边界条件,该边界条件满足接触压力密度的应力强度因子在接触区边界周围应具有相同值的条件。在不可压缩的情况下,得到了微扰圆形接触区域的扰动解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信