The large-time development of the solution to an initial-value problem for the generalised burgers’ equation

IF 0.8
J. A. Leach
{"title":"The large-time development of the solution to an initial-value problem for the generalised burgers’ equation","authors":"J. A. Leach","doi":"10.1093/qjmam/hbw006","DOIUrl":null,"url":null,"abstract":"In this article, we consider an initial-value problem for the generalized Burgers’ equation. The normalized Burgers’ equation considered is given bywhere \n<tex>$-\\frac{1}{2} \\le \\delta \\not= 0$</tex>\n, and \n<tex>$x$</tex>\n and \n<tex>$t$</tex>\n represent dimensionless distance and time respectively. In particular, we consider the case when the initial data has a discontinuous step, where \n<tex>$u(x,0)= u_{+}$</tex>\n for \n<tex>$x \\ge 0$</tex>\n and \n<tex>$u(x,0)=u_{-}$</tex>\n for \n<tex>$x&lt;0$</tex>\n, where \n<tex>$u_{+}$</tex>\n and \n<tex>$u_{-}$</tex>\n are problem parameters with \n<tex>$u_{+} \\not= u_{-}$</tex>\n. The method of matched asymptotic coordinate expansions is used to obtain the large-\n<tex>$t$</tex>\n asymptotic structure of the solution to this problem, which exhibits a range of large-\n<tex>$t$</tex>\n attractors depending on the problem parameters. Specifically, the solution of the initial-value problem exhibits the formation of (i) an expansion wave when \n<tex>$\\delta&gt;-\\frac{1}{2}$</tex>\n and \n<tex>$u_{+}&gt;u_{-}$</tex>\n, (ii) a Taylor shock (hyperbolic tangent) profile when \n<tex>$\\delta&gt;-\\frac{1}{2}$</tex>\n and \n<tex>$u_{+}&lt;u_{-}$</tex>\n and (iii) the Rudenko–Soluyan similarity solution when \n<tex>$\\delta=-\\frac{1}{2}$</tex>\n.","PeriodicalId":92460,"journal":{"name":"The quarterly journal of mechanics and applied mathematics","volume":"69 3","pages":"231-256"},"PeriodicalIF":0.8000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qjmam/hbw006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of mechanics and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8210310/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we consider an initial-value problem for the generalized Burgers’ equation. The normalized Burgers’ equation considered is given bywhere $-\frac{1}{2} \le \delta \not= 0$ , and $x$ and $t$ represent dimensionless distance and time respectively. In particular, we consider the case when the initial data has a discontinuous step, where $u(x,0)= u_{+}$ for $x \ge 0$ and $u(x,0)=u_{-}$ for $x<0$ , where $u_{+}$ and $u_{-}$ are problem parameters with $u_{+} \not= u_{-}$ . The method of matched asymptotic coordinate expansions is used to obtain the large- $t$ asymptotic structure of the solution to this problem, which exhibits a range of large- $t$ attractors depending on the problem parameters. Specifically, the solution of the initial-value problem exhibits the formation of (i) an expansion wave when $\delta>-\frac{1}{2}$ and $u_{+}>u_{-}$ , (ii) a Taylor shock (hyperbolic tangent) profile when $\delta>-\frac{1}{2}$ and $u_{+}<u_{-}$ and (iii) the Rudenko–Soluyan similarity solution when $\delta=-\frac{1}{2}$ .
广义汉堡方程初值问题解的大时间发展
在本文中,我们考虑了广义Burgers方程的一个初值问题。所考虑的归一化Burgers方程由$-\frac{1}{2}\le\delta\not=0$给出,$x$和$t$分别表示无量纲距离和时间。特别地,我们考虑初始数据具有不连续步长的情况,其中$x\ge0$的$u(x,0)=u_{+}$和$x<;0$,其中$u_{+}$和$u_{-}$是问题参数,$u_{+}\not=u_{-}美元。使用匹配渐近坐标展开的方法来获得该问题解的大-$t$渐近结构,该结构根据问题参数表现出一系列大-$t吸引器。具体地,初值问题的解表现出(i)当$\delta>-\frac{1}{2}$和$u_{+}>;u_{-}$,(ii)当$\delta>-\frac{1}{2}$和$u{+}<;u_{-}$和(iii)当$\delta=-\frac{1}{2}$时的Rudenko–Soluyan相似性解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信