Spectral study of the Laplace–Beltrami operator arising in the problem of acoustic wave scattering by a quarter-plane

IF 0.8
R. C. Assier;C. Poon;N. Peake
{"title":"Spectral study of the Laplace–Beltrami operator arising in the problem of acoustic wave scattering by a quarter-plane","authors":"R. C. Assier;C. Poon;N. Peake","doi":"10.1093/qjmam/hbw008","DOIUrl":null,"url":null,"abstract":"The Laplace-Beltrami operator (LBO) on a sphere with a cut arises when considering the problem of wave scattering by a quarter-plane. Recent methods developed for sound-soft (Dirichlet) and sound-hard (Neumann) quarter-planes rely on an a priori knowledge of the spectrum of the LBO. In this article we consider this spectral problem for more general boundary conditions, including Dirichlet, Neumann, real and complex impedance, where the value of the impedance varies like \n<tex>${\\alpha / r, r}$</tex>\n being the distance from the vertex of the quarter-plane and \n<tex>$\\alpha$</tex>\n being constant, and any combination of these. We analyse the corresponding eigenvalues of the LBO, both theoretically and numerically. We show in particular that when the operator stops being self-adjoint, its eigenvalues are complex and are contained within a sector of the complex plane, for which we provide analytical bounds. Moreover, for impedance of small enough modulus \n<tex>${|\\alpha|}$</tex>\n, the complex eigenvalues approach the real eigenvalues of the Neumann case.","PeriodicalId":92460,"journal":{"name":"The quarterly journal of mechanics and applied mathematics","volume":"69 3","pages":"281-317"},"PeriodicalIF":0.8000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qjmam/hbw008","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of mechanics and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8210312/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The Laplace-Beltrami operator (LBO) on a sphere with a cut arises when considering the problem of wave scattering by a quarter-plane. Recent methods developed for sound-soft (Dirichlet) and sound-hard (Neumann) quarter-planes rely on an a priori knowledge of the spectrum of the LBO. In this article we consider this spectral problem for more general boundary conditions, including Dirichlet, Neumann, real and complex impedance, where the value of the impedance varies like ${\alpha / r, r}$ being the distance from the vertex of the quarter-plane and $\alpha$ being constant, and any combination of these. We analyse the corresponding eigenvalues of the LBO, both theoretically and numerically. We show in particular that when the operator stops being self-adjoint, its eigenvalues are complex and are contained within a sector of the complex plane, for which we provide analytical bounds. Moreover, for impedance of small enough modulus ${|\alpha|}$ , the complex eigenvalues approach the real eigenvalues of the Neumann case.
声波经四分之一平面散射问题中拉普拉斯-贝尔特拉米算子的频谱研究
当考虑四分之一平面的波散射问题时,出现了带切口球体上的拉普拉斯-贝尔特拉米算子。最近为声软(Dirichlet)和声硬(Neumann)四分之一平面开发的方法依赖于LBO频谱的先验知识。在这篇文章中,我们考虑了更一般的边界条件下的这个谱问题,包括狄利克雷、诺依曼、实阻抗和复阻抗,其中阻抗的值变化,比如${\alpha/r,r}$是到四分之一平面顶点的距离,$\alpha$是常数,以及它们的任何组合。我们从理论和数值上分析了LBO的相应特征值。我们特别证明了当算子停止自伴随时,其特征值是复数的,并且包含在复平面的一个扇区内,我们为其提供了解析界。此外,对于模${|\alpha|}$足够小的阻抗,复本征值接近Neumann情形的实本征值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信