{"title":"Understanding requirements and issues in disaster area using geotemporal visualization of Twitter analysis","authors":"A. Murakami;T. Nasukawa;K. Watanabe;M. Hatayama","doi":"10.1147/JRD.2019.2962491","DOIUrl":null,"url":null,"abstract":"During disasters, requirements and situations on the ground change very rapidly. Moreover, they depend on timing and location; thus, it is very hard to understand them in a timely manner. Social media may contain such information with the posted time and the location information. However, it is difficult to extract situational requirements from numbers of conflicting sources. In this article, we propose a system that enables us to find out such useful information from social media and visualize it to understand the data easily. The system is divided into two steps. The first step is to extract requirements and issues from textual data, such as “We cannot buy gas here” or “We are short of batteries,” using natural language processing (NLP) technologies. The system also uses NLP to extract geolocation information, such as city names and location landmarks. The second step is to visualize the results in a timely and geolocated manner. We show the system results with using real Twitter data from the Kumamoto Earthquake in 2016. By visualizing the information, the personnel in the disaster area, such as the local governments and/or volunteer organizations, can utilize this information very effectively. For instance, they can decide how to distribute food and water in the disaster area and also how to implement and responsed to their logistics.","PeriodicalId":55034,"journal":{"name":"IBM Journal of Research and Development","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1147/JRD.2019.2962491","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IBM Journal of Research and Development","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/8943306/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
During disasters, requirements and situations on the ground change very rapidly. Moreover, they depend on timing and location; thus, it is very hard to understand them in a timely manner. Social media may contain such information with the posted time and the location information. However, it is difficult to extract situational requirements from numbers of conflicting sources. In this article, we propose a system that enables us to find out such useful information from social media and visualize it to understand the data easily. The system is divided into two steps. The first step is to extract requirements and issues from textual data, such as “We cannot buy gas here” or “We are short of batteries,” using natural language processing (NLP) technologies. The system also uses NLP to extract geolocation information, such as city names and location landmarks. The second step is to visualize the results in a timely and geolocated manner. We show the system results with using real Twitter data from the Kumamoto Earthquake in 2016. By visualizing the information, the personnel in the disaster area, such as the local governments and/or volunteer organizations, can utilize this information very effectively. For instance, they can decide how to distribute food and water in the disaster area and also how to implement and responsed to their logistics.
期刊介绍:
The IBM Journal of Research and Development is a peer-reviewed technical journal, published bimonthly, which features the work of authors in the science, technology and engineering of information systems. Papers are written for the worldwide scientific research and development community and knowledgeable professionals.
Submitted papers are welcome from the IBM technical community and from non-IBM authors on topics relevant to the scientific and technical content of the Journal.