Sensitivity of Love and Quasi-Rayleigh waves to model parameters

IF 0.8
D. R. Dalton;M. A. Slawinski;P. Stachura;T. Stanoev
{"title":"Sensitivity of Love and Quasi-Rayleigh waves to model parameters","authors":"D. R. Dalton;M. A. Slawinski;P. Stachura;T. Stanoev","doi":"10.1093/qjmam/hbx001","DOIUrl":null,"url":null,"abstract":"We examine the sensitivity of the Love and the quasi-Rayleigh waves to model parameters. Both waves are guided waves that propagate in the same model of an elastic layer above an elastic halfspace. We study their dispersion curves without any simplifying assumptions, beyond the standard approach of elasticity theory in isotropic media. We examine the sensitivity of both waves to elasticity parameters, frequency and layer thickness, for varying frequency and different modes. In the case of Love waves, we derive and plot the absolute value of a dimensionless sensitivity coefficient in terms of partial derivatives, and perform an analysis to find the optimum frequency for determining the layer thickness. For a coherency of the background information, we briefly review the Love-wave dispersion relation and provide details of the less-common derivation of the quasi-Rayleigh relation in the Appendix. We compare that derivation to past results in the literature, finding certain discrepancies among them.","PeriodicalId":92460,"journal":{"name":"The quarterly journal of mechanics and applied mathematics","volume":"70 2","pages":"103-130"},"PeriodicalIF":0.8000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qjmam/hbx001","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of mechanics and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8210305/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We examine the sensitivity of the Love and the quasi-Rayleigh waves to model parameters. Both waves are guided waves that propagate in the same model of an elastic layer above an elastic halfspace. We study their dispersion curves without any simplifying assumptions, beyond the standard approach of elasticity theory in isotropic media. We examine the sensitivity of both waves to elasticity parameters, frequency and layer thickness, for varying frequency and different modes. In the case of Love waves, we derive and plot the absolute value of a dimensionless sensitivity coefficient in terms of partial derivatives, and perform an analysis to find the optimum frequency for determining the layer thickness. For a coherency of the background information, we briefly review the Love-wave dispersion relation and provide details of the less-common derivation of the quasi-Rayleigh relation in the Appendix. We compare that derivation to past results in the literature, finding certain discrepancies among them.
Love波和准rayleigh波对模型参数的敏感性
我们检验了洛夫波和准瑞利波对模型参数的敏感性。两种波都是在弹性半空间上方的弹性层的相同模型中传播的导波。我们在没有任何简化假设的情况下研究了它们的色散曲线,超出了各向同性介质中弹性理论的标准方法。对于不同的频率和不同的模式,我们检查了两种波对弹性参数、频率和层厚度的敏感性。在洛夫波的情况下,我们推导并绘制了用偏导数表示的无量纲灵敏度系数的绝对值,并进行了分析,以找到确定层厚度的最佳频率。对于背景信息的相干性,我们简要回顾了洛夫波色散关系,并在附录中提供了准瑞利关系的不太常见的推导细节。我们将这种推导与文献中过去的结果进行了比较,发现它们之间存在一定的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信