User Satisfaction-Aware Edge Computation Offloading in 5G Multi-Scenario

Xiaochuan Sun;Xiaoyu Niu;Yutong Wang;Yingqi Li
{"title":"User Satisfaction-Aware Edge Computation Offloading in 5G Multi-Scenario","authors":"Xiaochuan Sun;Xiaoyu Niu;Yutong Wang;Yingqi Li","doi":"10.23919/JCIN.2023.10272354","DOIUrl":null,"url":null,"abstract":"Edge computation offloading has made some progress in the fifth generation mobile network (5G). However, load balancing in edge computation offloading is still a challenging problem. Meanwhile, with the continuous pursuit of low execution latency in 5G multi-scenario, the functional requirements of edge computation offloading are further exacerbated. Given the above challenges, we raise a unique edge computation offloading method in 5G multi-scenario, and consider user satisfaction. The method consists of three functional parts: offloading strategy generation, offloading strategy update, and offloading strategy optimization. First, the offloading strategy is generated by means of a deep neural network (DNN), then update the offloading strategy by updating the DNN parameters. Finally, we optimize the offloading strategy based on changes in user satisfaction. In summary, compared to existing optimization methods, our proposal can achieve performance close to the optimum. Massive simulation results indicate the latency of the execution of our method on the CPU is under 0.1 seconds while improving the average computation rate by about 10%.","PeriodicalId":100766,"journal":{"name":"Journal of Communications and Information Networks","volume":"8 3","pages":"271-282"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10272354/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Edge computation offloading has made some progress in the fifth generation mobile network (5G). However, load balancing in edge computation offloading is still a challenging problem. Meanwhile, with the continuous pursuit of low execution latency in 5G multi-scenario, the functional requirements of edge computation offloading are further exacerbated. Given the above challenges, we raise a unique edge computation offloading method in 5G multi-scenario, and consider user satisfaction. The method consists of three functional parts: offloading strategy generation, offloading strategy update, and offloading strategy optimization. First, the offloading strategy is generated by means of a deep neural network (DNN), then update the offloading strategy by updating the DNN parameters. Finally, we optimize the offloading strategy based on changes in user satisfaction. In summary, compared to existing optimization methods, our proposal can achieve performance close to the optimum. Massive simulation results indicate the latency of the execution of our method on the CPU is under 0.1 seconds while improving the average computation rate by about 10%.
5G多场景下用户满意度感知边缘计算卸载
边缘计算卸载在第五代移动网络(5G)中取得了一些进展。然而,边缘计算卸载中的负载均衡仍然是一个具有挑战性的问题。同时,随着5G多场景对低执行时延的不断追求,边缘计算卸载的功能需求进一步加剧。鉴于上述挑战,我们提出了5G多场景下独特的边缘计算卸载方法,并考虑用户满意度。该方法包括卸载策略生成、卸载策略更新和卸载策略优化三个功能部分。首先利用深度神经网络(DNN)生成卸载策略,然后通过更新深度神经网络参数来更新卸载策略。最后,根据用户满意度的变化对卸载策略进行优化。综上所述,与现有的优化方法相比,我们的方案可以实现接近最优的性能。大量的仿真结果表明,我们的方法在CPU上的执行延迟低于0.1秒,而平均计算率提高了约10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信